zoukankan      html  css  js  c++  java
  • Digital Roots(hdoj1013)

    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.
     
    Input
    The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.
     
    Output
    For each integer in the input, output its digital root on a separate line of the output.
     
    Sample Input
    24
    39
    0
     
    Sample Output
    6
    3
     1 #include<stdio.h>
     2 #include<string.h>
     3 int s(int sum)
     4 {
     5     int a=0,b=0;
     6     while(sum!=0)
     7         {
     8             a=sum%10;
     9             sum=sum/10;
    10             b+=a;
    11         }
    12         return b;
    13 }
    14 int main()
    15 {
    16     char a[10000];
    17     int len;
    18     while(gets(a)&&a[0]!='0')
    19     {
    20         int sum=0;
    21         len=strlen(a);
    22         while(len--)
    23         {
    24             sum+=a[len]-'0';
    25         }
    26         while(sum>=10)
    27             sum=s(sum);
    28         printf("%d
    ",sum);
    29     }
    30 }

    WAcode:

     1 #include<stdio.h>/*原因貌似是因为位数不够。。*/
     2 int main()
     3 {
     4     int n;
     5     while(scanf("%d",&n)==1&&n!=0)
     6     {
     7         while(n>=10)
     8         {
     9             n=n/10+n%10;
    10         }
    11         printf("%d
    ",n);
    12     }
    13 }
  • 相关阅读:
    oracle 触发器的编写
    单例类与常见双下方法
    实现高效率的冒泡排序
    面向对象基础(五)
    面向对象基础(四)
    面向对象基础(三)
    面向对象基础(二)
    面向对象(基础)
    四指针法
    因数法
  • 原文地址:https://www.cnblogs.com/a1225234/p/4502043.html
Copyright © 2011-2022 走看看