zoukankan      html  css  js  c++  java
  • Roads in the North(POJ 2631 DFS)

    Description

    Building and maintaining roads among communities in the far North is an expensive business. With this in mind, the roads are build such that there is only one route from a village to a village that does not pass through some other village twice.
    Given is an area in the far North comprising a number of villages and roads among them such that any village can be reached by road from any other village. Your job is to find the road distance between the two most remote villages in the area.

    The area has up to 10,000 villages connected by road segments. The villages are numbered from 1.

    Input

    Input to the problem is a sequence of lines, each containing three positive integers: the number of a village, the number of a different village, and the length of the road segment connecting the villages in kilometers. All road segments are two-way.

    Output

    You are to output a single integer: the road distance between the two most remote villages in the area.

    Sample Input

    5 1 6
    1 4 5
    6 3 9
    2 6 8
    6 1 7
    

    Sample Output

    22
    给定一颗棵树,求最长路径
    思路:随机找一个节点u,DFS求出u的最远点m,然后再DFS求出m的最远点n,之后m-n就是最长路径

    2.还可以用DP写,d(i)表示以i为根节点的最大路径值,=max(d(j)+1),j为i的子节点,取出最大和次大的d(j) +2;
     1 #include <cstring>
     2 #include <iostream>
     3 #include <algorithm>
     4 #include <cstdio>
     5 #include <vector>
     6 #define Max 10005
     7 using namespace std;
     8 vector <int> tree[Max],len[Max];
     9 int d[Max],vis[Max];
    10 bool flag=0;
    11 int an;
    12 int dfs(int node,int &ans)
    13 {
    14     int i,j;
    15     int maxn=0;
    16     int t,index;
    17     vis[node]=1;
    18     for(i=0;i<tree[node].size();i++)
    19     {
    20         if(vis[tree[node][i]])
    21             continue;
    22         dfs(tree[node][i],t);
    23         if((t+len[node][i])>maxn)
    24         {
    25         //    cout<<t<<endl;
    26             maxn=t+len[node][i];
    27             index=i;
    28         }
    29     }
    30     ans=maxn;
    31     return i;
    32 }
    33 void dfs1(int node,int sum)
    34 {
    35     int i;
    36     vis[node]=1;
    37     if(flag)
    38         return;
    39     if(sum==0)
    40     {
    41         flag=1;
    42         an=node;
    43         return;
    44     }
    45     for(i=0;i<tree[node].size();i++)
    46     {
    47         if(sum>=len[node][i]&&vis[tree[node][i]]==0)
    48             dfs1(tree[node][i],sum-len[node][i]);
    49     }
    50 }
    51 int main()
    52 {
    53     int i,j;
    54     int a,b,val,p=0;
    55     freopen("in.txt","r",stdin);
    56     bool flag=0;
    57     for(i=0;i<Max;i++)
    58         tree[i].clear(),len[i].clear();
    59     while(scanf("%d%d%d",&a,&b,&val)!=EOF)
    60     {
    61         tree[a].push_back(b);
    62         tree[b].push_back(a);
    63         len[a].push_back(val);
    64         len[b].push_back(val);
    65     }
    66     memset(vis,0,sizeof(vis));
    67     dfs(1,p);
    68     memset(vis,0,sizeof(vis));
    69     dfs1(1,p);
    70     memset(vis,0,sizeof(vis));
    71     dfs(an,p);
    72     cout<<p<<endl;
    73 }


  • 相关阅读:
    熟练掌握js中this的用法,解析this在不同应用场景的作用
    用css3绘制你需要的几何图形
    js中Prototype属性解释及常用方法
    Nodejs之MEAN栈开发(九)---- 用户评论的增加/删除/修改
    深入理解Angular中的$Apply()以及$Digest()
    全面理解JavaScript中的闭包的含义及用法
    详解javascript,ES5标准中新增的几种高效Array操作方法
    区别和详解:js中call()和apply()的用法
    框架基础:ajax设计方案(一)---集成核心请求
    jQuery点击图片弹出大图遮罩层
  • 原文地址:https://www.cnblogs.com/a1225234/p/5240063.html
Copyright © 2011-2022 走看看