zoukankan      html  css  js  c++  java
  • D

    原题地址:http://abc074.contest.atcoder.jp/tasks/arc083_b

    Time limit : 2sec / Memory limit : 256MB

    Score : 500 points

    Problem Statement

    In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are known about the road network:

    • People traveled between cities only through roads. It was possible to reach any city from any other city, via intermediate cities if necessary.
    • Different roads may have had different lengths, but all the lengths were positive integers.

    Snuke the archeologist found a table with N rows and N columns, A, in the ruin of Takahashi Kingdom. He thought that it represented the shortest distances between the cities along the roads in the kingdom.

    Determine whether there exists a road network such that for each u and v, the integer Au,v at the u-th row and v-th column of A is equal to the length of the shortest path from City u to City v. If such a network exist, find the shortest possible total length of the roads.

    Constraints

    • 1≤N≤300
    • If ij1≤Ai,j=Aj,i≤109.
    • Ai,i=0

    Inputs

    Input is given from Standard Input in the following format:

    N
    A1,1 A1,2  A1,N
    A2,1 A2,2  A2,N
    
    AN,1 AN,2  AN,N
    

    Outputs

    If there exists no network that satisfies the condition, print -1. If it exists, print the shortest possible total length of the roads.


    Sample Input 1

    Copy
    3
    0 1 3
    1 0 2
    3 2 0
    

    Sample Output 1

    Copy
    3
    

    The network below satisfies the condition:

    • City 1 and City 2 is connected by a road of length 1.
    • City 2 and City 3 is connected by a road of length 2.
    • City 3 and City 1 is not connected by a road.

    Sample Input 2

    Copy
    3
    0 1 3
    1 0 1
    3 1 0
    

    Sample Output 2

    Copy
    -1
    

    As there is a path of length 1 from City 1 to City 2 and City 2 to City 3, there is a path of length 2 from City 1 to City 3. However, according to the table, the shortest distance between City 1 and City 3 must be 3.

    Thus, we conclude that there exists no network that satisfies the condition.


    Sample Input 3

    Copy
    5
    0 21 18 11 28
    21 0 13 10 26
    18 13 0 23 13
    11 10 23 0 17
    28 26 13 17 0
    

    Sample Output 3

    Copy
    82
    

    Sample Input 4

    Copy
    3
    0 1000000000 1000000000
    1000000000 0 1000000000
    1000000000 1000000000 0
    

    Sample Output 4

    Copy
    3000000000
    题目意思:有一张地图上面标志着每个点之间最短路的大小;判断总路程;如果最短路和地图不符合就输出-1;
    解题思路:Floyd算法,如果两点之间进行了中转就记录;最后遍历判断,把所有没有经过中转的路相加;
    代码:
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include <string.h>
    #include <stdio.h>
    #include <math.h>
    #include <set>
    #include <queue>
    #include <stack>
    #include <map>
     
    using namespace std;
    typedef long long LL;
    const int MAX = 330;
     
    int visit[MAX][MAX]={0};
    LL Map1[MAX][MAX];
    LL Map[MAX][MAX];
    int N;
     
    int main()
    {
        cin>>N;
        for(int i = 1;i<=N;i++)
        for(int j = 1;j<=N;j++)
        {
            cin>>Map[i][j];
            Map1[i][j] = Map[i][j];
        }
        for(int k = 1;k<=N;k++)
            for(int i = 1;i<=N;i++)
                for(int j = 1;j<=N;j++){
                    if(Map[i][j]>=Map[i][k]+Map[k][j]&&(i!=k&&j!=k)){
                        //cout<<i<<" "<<j<<" "<<k<<endl;
                        Map1[i][j] = Map[i][k]+Map[k][j];
                        visit[i][j] = 1;
                    }
                }
     
        LL sum = 0;
        for(int i = 1;i<N;i++){
            for(int j = i+1;j<=N;j++)
            {
                if(Map[i][j]!=Map1[i][j]){
                     cout<<"-1"<<endl;
                     return 0;
                }
                if(Map[i][j]==Map1[i][j]&&visit[i][j]!=1)
                    sum+=Map[i][j];
     
            }
        }
        if(sum==0)
            cout<<-1<<endl;
        else
            cout<<sum<<endl;
     
     
        return 0;
    }
    
    
    
     
  • 相关阅读:
    基于bootstrap分页
    encache学习教程
    java异常和spring事务注解
    JSP自定义标签开发入门
    spring junit
    vs与数据库连接查询
    winfrom文本文档打开
    面向对象 封装
    面向对象 概念
    DW 游记代码
  • 原文地址:https://www.cnblogs.com/a2985812043/p/7749296.html
Copyright © 2011-2022 走看看