zoukankan      html  css  js  c++  java
  • Ehcache(08)——可阻塞的Cache——BlockingCache

    http://haohaoxuexi.iteye.com/blog/2119737

    可阻塞的CacheBlockingCache

           在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.sf.ehcache.concurrent.ReadWriteLockSync,与显示锁调用是一样的实现,而ReadWriteLockSync内部使用的是Java的java.util.concurrent.locks.ReadWriteLock。

           BlockingCache拥有两个构造函数,它们都接收一个Ehcache对象,其中一个还接收一个指定并发数量的参数numberOfStripes,另一个没有numberOfStripes参数,但其将使用默认值,默认值为2048。numberOfStripes的值必须大于0,且为2的指数。接收的参数cache表示真正进行操作的Ehcache对象,BlockingCache只是对其进行了封装,使其支持并发操作。

    public BlockingCache(final Ehcache cache, int numberOfStripes) throws CacheException {  
        super(cache);  
        this.stripes = numberOfStripes;  
        this.cacheLockProviderReference = new AtomicReference<CacheLockProvider>();  
    }  
      
    public BlockingCache(final Ehcache cache) throws CacheException {  
        this(cache, StripedReadWriteLockSync.DEFAULT_NUMBER_OF_MUTEXES);  
    }  
    

         虽然我们的Ehcache是支持锁调用的,但BlockingCache与显示锁调用不同的是它不是直接通过所持有的Ehcache来获取锁和释放锁的,而是由其内部完成的。在从BlockingCache中get元素时,是支持并发读的,这没有问题,但如果对应key对应的元素不存在,则线程将被阻塞,直到调用了对应的put()方法存放了一个对应的key的元素为止。这是怎么做到的呢?我们来看一下BlockingCache的源码。

    public Element get(final Object key) throws RuntimeException, LockTimeoutException {  
        getObserver.begin();  
        Sync lock = getLockForKey(key);  
        acquiredLockForKey(key, lock, LockType.READ);  
        Element element;  
        try {  
            element = underlyingCache.get(key);  
        } finally {  
            lock.unlock(LockType.READ);  
        }  
        if (element == null) {  
            acquiredLockForKey(key, lock, LockType.WRITE);  
            element = underlyingCache.get(key);  
            if (element != null) {  
                lock.unlock(LockType.WRITE);  
                getObserver.end(GetOutcome.HIT);  
            } else {  
                getObserver.end(GetOutcome.MISS_AND_LOCKED);  
            }  
            return element;  
        } else {  
            getObserver.end(GetOutcome.HIT);  
            return element;  
        }  
    }  
    

      上述是BlockingCache的核心get()方法。我们可以看到首先我们获取到了对应key的Sync,Sync是一个接口,其实现类通过持有的Lock对象可以对对应的key进行Read Lock或Write Lock。另外有一点需要注意的是对于同一个key而言,我们使用的是同一个Lock对象。通过上一节对Ehcache显示锁介绍,我们知道Read Lock之间是不会阻塞的。所以当我们在试图get一个元素时:

           1、如果对应的key没有Write锁,那我们的代码都可以顺利的执行到判断element是否为null那一行,这个时候获取到的Read锁已经释放,不会影响以后获取其Write锁;

           2、如果对应key存在Write锁,则在调用“acquiredLockForKey(key, lock, LockType.READ);”时就会被阻塞直到对应的Write锁被释放。

           3、如果获取到的element不为null,则将直接返回。

           4、如果element为null,则将获取对应key的Write锁,此时如果存在其它线程获取了该key的Read锁,则将阻塞直到不存在对应的Read锁。

           5、获取到Write锁以后重新get一次对应的元素,因为有可能在判断element为null之后,获取对应的Write锁之前,已经有线程put了一个对应的元素到Cache中。如果获取到了对应的元素则释放对应的Write锁,然后返回获取到的元素。

           6、获取到了Write锁之后其它试图获取对应key的Read锁或Write锁的线程都将被阻塞。如果获取到了Write锁之后对应的元素还是为null,则将直接返回。此时除该线程以外的其它调用了get()方法的线程都将被阻塞,因为当前线程的Write锁还没有释放。

           通过上面的代码和分析我们知道,如果在利用BlockingCache的get()方法获取一个元素时,如果对应的元素不存在,则除最终获取到Write锁的线程以外的线程都将被阻塞,而获取到了对应key的Write锁的线程该如何释放其Write锁呢?这是通过往BlockingCache中put一个对应key的元素来释放的。BlockingCache是实现了Ehcache接口的,所以Ehcache拥有的put*()方法,BlockingCache都有,但是在BlockingCache的put*()方法中都加入了一个doAndReleaseWriteLock的逻辑。我们先来看一个put()方法的实现。

    public void put(final Element element) {  
      
        doAndReleaseWriteLock(new PutAction<Void>(element) {  
            @Override  
            public Void put() {  
                if (element.getObjectValue() != null) {  
                    underlyingCache.put(element);  
                } else {  
                    underlyingCache.remove(element.getObjectKey());  
                }  
                returnnull;  
            }  
        });  
    }  
    

          我们可以看到在该put()方法内部调用了一个doAndReleaseWriteLock()方法,从该方法名以及其接收的参数我们可以看出,doAndReleaseWriteLock()方法的作用就是执行接收的参数PutAction的put()方法,然后释放对应key的Write锁,而且PutAction的构造是接收一个Element参数的,这样在PutAction中的put()方法中我们就可以使用该Element对象了。doAndReleaseWriteLock()方法的实现如下所示。

    private <V> V doAndReleaseWriteLock(PutAction<V> putAction) {  
      
        if (putAction.element == null) {  
            returnnull;  
        }  
        Object key = putAction.element.getObjectKey();  
        Sync lock = getLockForKey(key);  
        if (!lock.isHeldByCurrentThread(LockType.WRITE)) {  
            lock.lock(LockType.WRITE);  
        }  
        try {  
            return putAction.put();  
        } finally {  
            //Release the writelock here. This will have been acquired in the get, where the element was null  
            lock.unlock(LockType.WRITE);  
        }  
    } 
    

     从源代码我们可以看到,其内部实现跟我们设想的差不多。在PutAction所持有的Element不为null的情况下会判断当前线程是否持有对应key的Write锁,如果没有对应key的Write锁,则将试图获取其Write锁,这个时候如果该key的Write锁已经被别的线程获取了,则在这里将进行阻塞。拥有了Write锁之后就可以执行PutAction对象的put()方法了,执行完后就可以释放对应key的Write锁了。

           回过头来看,之前从BlockingCache中get元素时,如果对应元素不存在,则该线程将获取到对应key的Write锁(并发情况下,究竟是哪一个线程会获取到该key的Write锁是不定的),将使其它试图获取该key的Write锁或Read锁的线程阻塞。如果该线程此时往BlockingCache中put一个对应key的元素,则该线程所持有的Write锁将会释放,其它线程可以顺利的获取该key的Read锁和Write锁,即可以顺利的调用BlockingCache的get()方法获取对应的元素。BlockingCache就是为使用页面缓存而设计的,当多个线程同时请求一个页面时,如果缓存中存在对应的页面,则可以直接返回,Read锁之间不会阻塞;如果对应的页面不存在,那么这个时候只有一个线程会返回null,其它线程都将被阻塞,返回值为null时,Ehcache将会把对应的页面put到BlockingCache中,此时该线程所持有的Write锁将释放,而其它被阻塞的线程也将可以顺利的获取到该页面。这样一来就可以避免多个线程在get到的元素为null时,都同时往缓存中put对应的页面,造成不必要的资源浪费。如果有页面缓存这样的需求的话使用BlockingCache是再合适不过了。关于Ehcache使用页面缓存的更多信息将在下一篇博文中介绍。

           刚刚说的BlockingCache就是为页面缓存设计的。如果用户需要自己使用BlockingCache时注意在获取到的元素为null时要释放对应的Write锁。这个时候有两种方法,一是调用BlockingCache的任意put方法,往其中存放一个对应key的元素;二是自己定义一个类继承BlockingCache,然后开放一个释放锁的方法,对应逻辑可以参考BlockingCache的doAndReleaseLock()方法,这是因为其内部获取锁的方法getLockForKey()的访问类型是protected。

           此外,BlockingCache在获取锁时如果被阻塞了,那么阻塞时间是不定的,它有可能会非常长。如果不希望阻塞时间太长的话,我们可以通过BlockingCache的setTimeoutMillis()方法设置最长阻塞时间,单位为毫秒,这样如果一个线程在timeoutMillis时间内还没有获取到对应的锁则将抛出LockTimeoutException。

    (注:本文是基于Ehcache2.8.1所写)

  • 相关阅读:
    28完全背包+扩展欧几里得(包子凑数)
    HDU 3527 SPY
    POJ 3615 Cow Hurdles
    POJ 3620 Avoid The Lakes
    POJ 3036 Honeycomb Walk
    HDU 2352 Verdis Quo
    HDU 2368 Alfredo's Pizza Restaurant
    HDU 2700 Parity
    HDU 3763 CDs
    POJ 3279 Fliptile
  • 原文地址:https://www.cnblogs.com/a757956132/p/4914870.html
Copyright © 2011-2022 走看看