zoukankan      html  css  js  c++  java
  • (次小生成树) poj 1679

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 21358   Accepted: 7560

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<string>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    #define INF 1<<30
    int n,m,a[110][110],low[110],vis[110],pre[110];
    int maxx[110][110],connect[110][110],mst;
    int prime()
    {
          int minn,pos,fa,ans=0;
          vis[1]=1,pos=1;
          for(int i=1;i<=n;i++)
                if(i!=pos)
                {
                      low[i]=a[pos][i];
                      pre[i]=pos;
                }
          for(int i=1;i<n;i++)
          {
                minn=INF;
                for(int j=1;j<=n;j++)
                {
                      if(!vis[j]&&minn>low[j])
                      {
                            pos=j;
                            minn=low[j];
                      }
                }
                fa=pre[pos];
                ans+=minn;
                vis[pos]=1;
                connect[fa][pos]=connect[pos][fa]=1;
                maxx[fa][pos]=maxx[pos][fa]=minn;
                for(int j=1;j<=n;j++)
                      maxx[pos][j]=maxx[j][pos]=max(maxx[pos][fa],maxx[fa][j]);
                for(int j=1;j<=n;j++)
                {
                      if(!vis[j]&&low[j]>a[pos][j])
                      {
                            low[j]=a[pos][j];
                            pre[j]=pos;
                      }
                }
          }
          return ans;
    }
    int main()
    {
          int tt;
          scanf("%d",&tt);
          while(tt--)
          {
                bool flag=false;
                memset(vis,0,sizeof(vis));
                memset(connect,0,sizeof(connect));
                memset(maxx,0,sizeof(maxx));
                scanf("%d%d",&n,&m);
                for(int i=1;i<=n;i++)
                      for(int j=1;j<=n;j++)
                            a[i][j]=INF;
                for(int i=1;i<=m;i++)
                {
                      int x,y,z;
                      scanf("%d%d%d",&x,&y,&z);
                      a[x][y]=z,a[y][x]=z;
                }
                mst=prime();
                for(int i=1;i<=n;i++)
                      for(int j=1;j<=n;j++)
                      {
                            if(connect[i][j]||a[i][j]==INF)
                                  continue;
                            if(a[i][j]==maxx[i][j])
                            {
                                  flag=true;
                                  break;
                            }
                      }
                if(flag)
                      printf("Not Unique!
    ");
                else
                      printf("%d
    ",mst);
          }
          return 0;
    }
    

      

  • 相关阅读:
    liunx各命令及全称
    window启动数据库服务命令
    拉取github指定分支上的代码
    python项目学习
    客户展示 增删改查
    登录 注册功能 表梳理
    java简历
    go语言数组
    go语言 变量作用域
    go语言函数
  • 原文地址:https://www.cnblogs.com/a972290869/p/4228918.html
Copyright © 2011-2022 走看看