zoukankan      html  css  js  c++  java
  • (次小生成树) poj 1679

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 21358   Accepted: 7560

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<string>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    #define INF 1<<30
    int n,m,a[110][110],low[110],vis[110],pre[110];
    int maxx[110][110],connect[110][110],mst;
    int prime()
    {
          int minn,pos,fa,ans=0;
          vis[1]=1,pos=1;
          for(int i=1;i<=n;i++)
                if(i!=pos)
                {
                      low[i]=a[pos][i];
                      pre[i]=pos;
                }
          for(int i=1;i<n;i++)
          {
                minn=INF;
                for(int j=1;j<=n;j++)
                {
                      if(!vis[j]&&minn>low[j])
                      {
                            pos=j;
                            minn=low[j];
                      }
                }
                fa=pre[pos];
                ans+=minn;
                vis[pos]=1;
                connect[fa][pos]=connect[pos][fa]=1;
                maxx[fa][pos]=maxx[pos][fa]=minn;
                for(int j=1;j<=n;j++)
                      maxx[pos][j]=maxx[j][pos]=max(maxx[pos][fa],maxx[fa][j]);
                for(int j=1;j<=n;j++)
                {
                      if(!vis[j]&&low[j]>a[pos][j])
                      {
                            low[j]=a[pos][j];
                            pre[j]=pos;
                      }
                }
          }
          return ans;
    }
    int main()
    {
          int tt;
          scanf("%d",&tt);
          while(tt--)
          {
                bool flag=false;
                memset(vis,0,sizeof(vis));
                memset(connect,0,sizeof(connect));
                memset(maxx,0,sizeof(maxx));
                scanf("%d%d",&n,&m);
                for(int i=1;i<=n;i++)
                      for(int j=1;j<=n;j++)
                            a[i][j]=INF;
                for(int i=1;i<=m;i++)
                {
                      int x,y,z;
                      scanf("%d%d%d",&x,&y,&z);
                      a[x][y]=z,a[y][x]=z;
                }
                mst=prime();
                for(int i=1;i<=n;i++)
                      for(int j=1;j<=n;j++)
                      {
                            if(connect[i][j]||a[i][j]==INF)
                                  continue;
                            if(a[i][j]==maxx[i][j])
                            {
                                  flag=true;
                                  break;
                            }
                      }
                if(flag)
                      printf("Not Unique!
    ");
                else
                      printf("%d
    ",mst);
          }
          return 0;
    }
    

      

  • 相关阅读:
    手动创建DataSet数据集
    Ado.Net 参数化操作
    序列化和反序列化
    封装多个集合在一个类中
    窗体之间的传递
    C程序设计语言练习题1-12
    C程序设计语言练习题1-11
    C程序设计语言练习题1-10
    C程序设计语言练习题1-9
    C程序设计语言练习题1-8
  • 原文地址:https://www.cnblogs.com/a972290869/p/4228918.html
Copyright © 2011-2022 走看看