zoukankan      html  css  js  c++  java
  • (动态规划)cf 431C

    C. k-Tree
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.

    k-tree is an infinite rooted tree where:

    • each vertex has exactly k children;
    • each edge has some weight;
    • if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1, 2, 3, ..., k.

    The picture below shows a part of a 3-tree.

    As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: "How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?".

    Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo1000000007 (109 + 7).

    Input

    A single line contains three space-separated integers: nk and d (1 ≤ n, k ≤ 100; 1 ≤ d ≤ k).

    Output

    Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).

    Sample test(s)
    input
    3 3 2
    output
    3
    input
    3 3 3
    output
    1
    input
    4 3 2
    output
    6
    input
    4 5 2
    output
    7

    神奇的动态规划啊啊啊啊啊啊,

    两个状态,dp[n][0,1] 0,1代表是否选超过d的。

    dp[i+j][0]+=dp[i][0] j<d

    dp[i+j][1]+=dp[i][0] j>=d

    dp[i+j][1]+=dp[i][1]

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define LL long long
    #define MOD 1000000007
    LL n,k,d,dp[110][2];
    int main()
    {
          scanf("%I64d%I64d%I64d",&n,&k,&d);
          memset(dp,0,sizeof(dp));
          dp[0][0]=1;
          for(int i=0;i<n;i++)
          {
                for(int j=1;j<=k;j++)
                {
                      if(i+j>n) continue;
                      if(j<d) dp[i+j][0]+=dp[i][0];
                      else dp[i+j][1]+=dp[i][0];
                      dp[i+j][1]+=dp[i][1];
                      dp[i+j][0]=dp[i+j][0]%MOD;
                      dp[i+j][1]=dp[i+j][1]%MOD;
                }
          }
          printf("%I64d",dp[n][1]);
          return 0;
    }
    

      

  • 相关阅读:
    高清摄像头MIPI接口与ARM处理器的连接
    How to make apq8084
    DBI接口和DPI接口的区别
    MIPI DSI协议介绍
    LCD显示的一些基本概念以及DSI的一些clock解释
    AXI总线
    SPI,UART,I2C都有什么区别,及其各自的特点
    图像滤镜处理算法:灰度、黑白、底片、浮雕
    用到的一些算法收集
    实用Linux命令,不求最全但求实用-------iptables命令实战
  • 原文地址:https://www.cnblogs.com/a972290869/p/4242543.html
Copyright © 2011-2022 走看看