参考Tensorflow%20实战Google深度学习框架.pdf
import os
import tab
import tensorflow as tf
print "hello tensorflow 111"
os.system("clear")
from numpy.random import RandomState
batch_size = 8
w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
x = tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_ = tf.placeholder(tf.float32,shape=(None,1),name='y-input')
a = tf.matmul(x,w1)
y = tf.matmul(a,w2)
cross_entropy = -tf.reduce_mean(
y_ * tf.log(tf.clip_by_value(y,1e-10,1.0)))
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
rdm = RandomState(1)
dataset_size = 128
X = rdm.rand(dataset_size,2)
Y = [[int(x1+x2<1)] for (x1,x2) in X ]
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
print sess.run(w1)
print sess.run(w2)
STEPS = 5000
for i in range(STEPS):
start = (i * batch_size) % dataset_size
end = min(start+batch_size,dataset_size)
sess.run(train_step, feed_dict = {x: X[start:end], y_: Y[start:end]} )
if i % 1000 == 0:
total_cross_entropy = sess.run( cross_entropy, feed_dict={x: X, y_: Y})
print "After %d training step(s),cross entropy on all data is %g" % (i, total_cross_entropy)
print sess.run(w1)
print sess.run(w2)
print "end "