zoukankan      html  css  js  c++  java
  • 机器学习

    AS WE ALL KNOW,学机器学习的一般都是从python+sklearn开始学,适用于数据量不大的场景(这里就别计较“不大”具体指标是啥了,哈哈)

    数据量大了,就需要用到其他技术了,如:spark, tensorflow,当然也有其他技术,此处略过一坨字...

    先来看看如何让这3个集成起来吧(WINDOWS环境):pycharm(python开发环境), pyspark.cmd(REPL命令行接口), spark(spark驱动、MASTER等)

    download Anaconda, latest version, which 64bit support for windows, 这里必须安装64位版本的Anaconda,因为后面tensorflow只支持64位的

    https://www.continuum.io/downloads/

    安装Anaconda,都是默认选项就行

    dowload pycharm from jetbrain site, and install (please do it by yourself),这个很简单,直接略过

    接下来是下载spark,我下的是最新版2.1.0的 http://spark.apache.org/downloads.html

    解压缩后把它复制到一个容易找的目录,我这是C:spark-2.1.0-bin-hadoop2.7

    这个时候如果直接双击bin下的spark-shell.cmd文件的话是会报错的,主要原因是没有winutils.exe这东西(用来在windows环境下模拟文件操作的),因此还需要做几个小步骤才能正常启动

    1. 设置一个假的hadoop目录,在这个目录的bin下放刚才说的那个winutils.exe文件(需要自己创建bin目录)

    2. 设置环境变量HADOOP_HOME,值为这个假的hadoop目录

    3. 拷贝winutils.exe到这个bin里,下载

    OK,这时可以双击spark-shell.cmd了,如下:

    HOHO, ==,==,我们不是要搞PYTHON环境嘛,怎么搞scala了,别急,先搞scala是因为先要把基本的给走通,再去搞python环境的接口。

    python接口的REPL是这个文件,pyspark.cmd,双击,也报错...

    别急,这里是因为python版本问题,anaconda最新版的python解释器版本是3.6.1,这个版本的spark不支持,需要降低版本 到3.5

    卸载python? 不用,用anaconda的环境切换就行了

    1. 先创建一个新的开发环境: conda create -n my_new_env_python35

    2. 激活这个新的开发环境: activate my_new_env_python35

    3. 在这个新的开发环境中安装python 3.5: conda install python=3.5

    这时python3.5版本的解释器就算是安装完成了,默认目录在C:ProgramDataAnaconda3envsmy_new_env_python35python.exe

    然后就是需要把spark的python支持包复制到相应的路径中了,从下图1复制到my_new_env_python35环境的Libsite-packages目录下

    接下来需要把python默认版本改成python3.5,需要修改PATH路径,把python3.5的路径放在第一个查找路径下就行了

    然后就开始整pycharm开发环境了。 

    首先肯定是新建一个python项目了,然后改设置,用来指定python解释器的路径,菜单:File-->Settings

    接着设置运行时候的配置参数

    漏了python调用pyspark的代码了,代码如下:

    import sys
    from operator import add
    
    from pyspark import SparkContext
    
    
    if __name__ == "__main__":
        sc = SparkContext(appName="PythonWordCount")
        lines = sc.textFile('words.txt')
        count=lines.count()
        print(count)
        counts = lines.flatMap(lambda x: x.split(' ')) 
                      .map(lambda x: (x, 1)) 
                      .reduceByKey(add)
        output = counts.collect()
        for (word, count) in output:
            print("%s: %i" % (word, count))
    
        sc.stop()
    

    至此,python环境算是搞定了。

  • 相关阅读:
    事务
    触发器
    SQL 存储过程
    SQL 视图 索引
    SQL 函数
    SQL查询语句练习
    SQL约束
    SQL Server 数据的添加修改删除和查询
    The type ProxyGenerator is not accessible due to restriction on required library问题的解决
    ==与equals
  • 原文地址:https://www.cnblogs.com/aarond/p/pyspark.html
Copyright © 2011-2022 走看看