zoukankan      html  css  js  c++  java
  • 连续性特征(变量)如何计算卡方值

    Say you have one feature and a target with 3 possible values
    X = np.array([3.4, 3.4, 3. , 2.8, 2.7, 2.9, 3.3, 3. , 3.8, 2.5])
    y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 2])
    
         X  y
    0  3.4  0
    1  3.4  0
    2  3.0  0
    3  2.8  1
    4  2.7  1
    5  2.9  1
    6  3.3  2
    7  3.0  2
    8  3.8  2
    9  2.5  2

    First we binarize the target

    y = LabelBinarizer().fit_transform(y)
    
         X  y1  y2  y3
    0  3.4   1   0   0
    1  3.4   1   0   0
    2  3.0   1   0   0
    3  2.8   0   1   0
    4  2.7   0   1   0
    5  2.9   0   1   0
    6  3.3   0   0   1
    7  3.0   0   0   1
    8  3.8   0   0   1
    9  2.5   0   0   1

    Then perform a dot product between feature and target, i.e. sum all feature values by class value

    observed = y.T.dot(X) 
    >>> observed 
    array([ 9.8,  8.4, 12.6])

    Next take a sum of feature values and calculate class frequency

    feature_count = X.sum(axis=0).reshape(1, -1)
    class_prob = y.mean(axis=0).reshape(1, -1)
    
    >>> class_prob, feature_count
    (array([[0.3, 0.3, 0.4]]), array([[30.8]]))

    Now as in the first step we take the dot product, and get expected and observed matrices

    expected = np.dot(class_prob.T, feature_count)
    >>> expected 
    array([[ 9.24],[ 9.24],[12.32]])

    Finally we calculate a chi^2 value:

    chi2 = ((observed.reshape(-1,1) - expected) ** 2 / expected).sum(axis=0)
    >>> chi2 
    array([0.11666667])

    We have a chi^2 value, now we need to judge how extreme it is. For that we use a chi^2 distribution with number of classes - 1 degrees of freedom and calculate the area from chi^2 to infinity to get the probability of chi^2 be the same or more extreme than what we've got. This is a p-value. (using chi square survival function from scipy)

    p = scipy.special.chdtrc(3 - 1, chi2)
    >>> p
    array([0.94333545])

    Compare with SelectKBest:

    s = SelectKBest(chi2, k=1)
    s.fit(X.reshape(-1,1),y)
    >>> s.scores_, s.pvalues_
    (array([0.11666667]), [0.943335449873492])

    总结起来就是chi_2=SUM((Obs-Exp)**2/Exp),其中各个类别下的该变量取值分别求和作为Obs,概率*(变量取值之和)作为Exp。计算方法类比了离散型变量。

    来源:https://stackoverflow.com/questions/57273694/how-selectkbest-chi2-calculates-score

  • 相关阅读:
    iOS中文API之UITouch详解
    iOS中文API之UIResponder介绍
    NSProxy
    NSObject
    Objective-C 简介
    【摘录】在Windows平台上使用Objective-C
    基于VM10+Win7安装Mac OSX10.11 El Capitan
    关于安装黑苹果
    insta经典滤镜下载
    GPUImage简单滤镜使用之色阶(三)
  • 原文地址:https://www.cnblogs.com/aaronhoo/p/15651873.html
Copyright © 2011-2022 走看看