1. 索引介绍
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。
说起加速查询,就不得不提到索引了。什么索引:
简单的说,相当于图书的目录,可以帮助用户快速的找到需要的内容.
在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。能够大大提高查询效率。特别是当数据量非常大,查询涉及多个表时,使用索引往往能使查询速度加快成千上万倍.
总结:
索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查地图等等
本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。
2.索引方法
1. BTREE 索引
就是一种将索引值按一定的算法,存入一个树形的数据结构中.(如下图:)
系统从磁盘读取数据到内存时是以磁盘块(block)为基本单位的,位于同一磁盘块中的数据会被一次性读取出来,而不是按需读取。InnoDB 存储引擎使用页作为数据读取单位,页是其磁盘管理的最小单位,默认 page 大小是 16kB。
如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
强烈注意: 索引字段要尽量的小,磁盘块可以存储更多的索引.
2. HASH 索引
hash就是一种(key=>value)形式的键值对,允许多个key对应相同的value,但不允许一个key对应多个value,为某一列或几列建立hash索引,就会利用这一列或几列的值通过一定的算法计算出一个hash值,对应一行或几行数据. hash索引可以一次定位,不需要像树形索引那样逐层查找,因此具有极高的效率.
假设索引使用hash函数f( ),如下:
1234f(
'Arjen'
) = 2323
f(
'Baron'
) = 7437
f(
'Peter'
) = 8784
f(
'Vadim'
) = 2458
此时,索引的结构大概如下:
3.HASH与BTREE比较:
hash类型的索引:查询单条快,范围查询慢 btree类型的索引:b+树,层数越多,数据量越大,范围查询和随机查询快(innodb默认索引类型) 不同的存储引擎支持的索引类型也不一样 InnoDB 支持事务,支持行级别锁定,支持 Btree、Hash 等索引,不支持Full-text 索引; MyISAM 不支持事务,支持表级别锁定,支持 Btree、Full-text 等索引,不支持 Hash 索引; Memory 不支持事务,支持表级别锁定,支持 Btree、Hash 等索引,不支持 Full-text 索引; NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 Btree、Full-text 等索引; Archive 不支持事务,支持表级别锁定,不支持 Btree、Hash、Full-text 等索引;
3.索引类型
MySQL中常见索引有:
- 普通索引
- 唯一索引
- 主键索引
- 组合索引
1.普通索引
普通索引仅有一个功能:加速查询