zoukankan      html  css  js  c++  java
  • 数据结构与算法-复杂度

      数据结构和算法本身解决的是,如何让代码运行得更快,如何让代码更省存储空间。所以就分为两个维度分析,时间复杂度、空间复杂度。复杂度分析能事先初略的估计算法的执行效率。

    时间复杂度

      大O复杂度表示法

      大O符号是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。而这个记号则是在另一位德国数论学家艾德蒙·朗道(Edmund Landau)的著作中才推广的,因此它有时又称为朗道符号(Landau symbol)。代表“order of ...”(……阶)的大O,最初是一个大写的希腊字母'Ο'(Omicron),现今用的是英文大写字母'O',但从来不是阿拉伯数字'0'。--摘百度百科

      T(n)=O(F(n)) :T(n)代表代码执行时间,F(n)代表代码总执行次数,O表示代码执行时间与代码总执行次数成正比

      复杂度量级:

      O(1):

      O(1)是一种常量阶表示法:最低的时间复杂度,如执行了一行声明或预算的一行代码,示例:  

    int x = 1;
    int y = 10;
    int z = x + y;

      O(logn)、O(nlogn)

      对数阶表示法:当数据增大n倍时,耗时增大logn倍,以下代码以2为底示例:

    inti=1; 
    while (i <= n) {
     i = i * 2; 
    }

      i的值从1开始,没循环一次就乘以2,当i大于等于n时,循环结束。时间复杂度是O(log2n)

      O(n)

      线性阶表示法:n越大、耗时越长,比如遍历

    for(int i = 0; i < n; i++){    
        ...
    }

      O(n^2),O(n^3),......,O(n^k)

      平方阶表示法:数据量增大n倍时,耗时增大n的平方倍,比如冒泡、选择、插入排序

    for(...){
      for(...){
          ...
      }  
    }

      O(2^n)、O(n!)

      指数阶表示法:随着数据规模n增大,对应算法的时间复杂度成2^n次方级变化,比如斐波那契数列

    public int Fibonacci(int number)
    {
        if (number <= 1) return number;
    
        return Fibonacci(number - 2) + Fibonacci(number - 1);
    }

      小结:

      从低阶到高阶

      O(1) < O(logn) < O(nlogn) < O(n) < O(n^2) < O(2^n) < O(n!) < O(n^n)

    空间复杂度

      空间复杂度的衡量取决于程序运行时占用内存空间的大小,当内存空间比较受限的时候,可以考虑时间换空间。时间复杂度和空间复杂度往往是相互影响的,有时为空提升执行效率,往往会牺牲存储空间,比如程序的缓存。

    总结:

  • 相关阅读:
    jsADS的库(待更新)
    javascript设计模式工厂方法模式
    jQuery星级评价
    邮政编码联动地址
    ADS图像缩放与剪裁(只是完成了前台的功能,传送数据到后台的功能待完成)
    ie6png透明解决(ietester的ie6有问题,原生ie6是没问题的)
    javascript设计模式桥接模式
    每一个人都应该学会执着
    防止电脑被攻击
    获取用户的IP地址的三个属性的区别
  • 原文地址:https://www.cnblogs.com/aaronzheng/p/12713807.html
Copyright © 2011-2022 走看看