http://www.lydsy.com/JudgeOnline/problem.php?id=2216
学习了一下决策单调性。
这道题决策单调性比较明显,不详细证了。
对于一个决策i,如果在i之前的j处进行决策,那么i之后的决策都不可能在j之前。
利用决策单调性,可以维护每个决策点形成的单调栈,更新决策点也是利用单调栈的信息在原数组上二分。
这道题假设j<i,然后扫两遍就可以了,时间复杂度(O(nlog n))。
看网上的大爷都写得单调队列?整体二分?orz
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 500003;
int st[N], top, stn[N];
void solve(int n, int *a, int *f) {
top = 0;
for (int i = 1; i <= n; ++i) {
int left = 1, right = top, mid;
while (left < right) {
mid = (left + right + 1) >> 1;
if (stn[mid] <= i) left = mid;
else right = mid - 1;
}
if (top) f[i] = max(ceil(sqrt(i - st[left])) + a[st[left]] - a[i], 0.0);
while (top && stn[top] > i && sqrt(stn[top] - st[top]) + a[st[top]] < sqrt(stn[top] - i) + a[i]) --top;
if (!top) {st[++top] = i; stn[top] = i + 1; continue;}
left = max(i + 1, stn[top] + 1); right = n + 1;
while (left < right) {
mid = (left + right) >> 1;
if (sqrt(mid - st[top]) + a[st[top]] < sqrt(mid - i) + a[i]) right = mid;
else left = mid + 1;
}
if (left <= n) st[++top] = i, stn[top] = left;
}
}
int a[N], n, f1[N], f2[N];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
solve(n, a, f1);
reverse(a + 1, a + n + 1);
solve(n, a, f2);
reverse(f2 + 1, f2 + n + 1);
for (int i = 1; i <= n; ++i) printf("%d
", max(f1[i], f2[i]));
return 0;
}