http://uoj.ac/problem/110
这道题subtask4和subtask5是不同的算法。
主要思想都是从高位到低位贪心确定答案。
对于subtask4,n比较小,设(f(i,j))表示前(i)个雕塑分成(j)组能否满足当前答案,最后检查(f(n,Asim B))是否有值为true的,时间复杂度(O(n^3logsum Y_i))。
对于subtask5,n比较大,但A=1,设(f(i))表示前(i)个雕塑要满足当前答案最少能分成多少组,最后检查(f(n))是否不大于B,时间复杂度(O(n^2logsum Y_i))。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 2003;
int n, A, B, Y[N];
ll sum[N], num = (1ll << 41) - 1;
namespace lalala {
bool f[N][N];
bool can(ll x) {
f[0][0] = true;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= B && j <= i; ++j) {
f[i][j] = false;
for (int k = i - 1; k >= 0; --k)
if (((sum[i] - sum[k]) | x) <= x && f[k][j - 1]) {
f[i][j] = true;
break;
}
}
for (int i = A; i <= B; ++i) if (f[n][i]) return true;
return false;
}
void solve() {
for (int i = 40; i >= 0; --i)
if (can(num ^ (1ll << i))) num ^= (1ll << i);
printf("%lld
", num);
}
}
namespace hahaha {
int f[N];
bool can(ll x) {
for (int i = 1; i <= n; ++i) {
f[i] = B + 1;
for (int j = i - 1; j >= 0; --j)
if (((sum[i] - sum[j]) | x) <= x && f[j] + 1 < f[i])
f[i] = f[j] + 1;
}
return f[n] <= B;
}
void solve() {
for (int i = 40; i >= 0; --i)
if (can(num ^ (1ll << i))) num ^= (1ll << i);
printf("%lld
", num);
}
}
int main() {
scanf("%d%d%d", &n, &A, &B);
for (int i = 1; i <= n; ++i) scanf("%d", Y + i), sum[i] = sum[i - 1] + Y[i];
if (A == 1) hahaha::solve();
else lalala::solve();
return 0;
}