https://vijos.org/p/1998
三维计算几何。
需要混合积求四面体体积;
四面体剖分后合并带权重心求总重心;
四面体重心的横纵坐标是四个顶点的横纵坐标的平均数;
三维差积求平面的法向量;
点积求法向量夹角(二面角)
这些知识就可以了AC此题了。
时间复杂度(O(nf)),注意(n,fleq 100),题面描述有误。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 103;
const double Pi = acos(-1);
struct Point {
double x, y, z;
Point(double _x = 0, double _y = 0, double _z = 0) : x(_x), y(_y), z(_z) {}
Point operator / (const double &A) const {
return Point(x / A, y / A, z / A);
}
Point operator + (const Point &A) const {
return Point(x + A.x, y + A.y, z + A.z);
}
Point operator - (const Point &A) const {
return Point(x - A.x, y - A.y, z - A.z);
}
double operator * (const Point &A) const {
return x * A.x + y * A.y + z * A.z;
}
Point operator ^ (const Point &A) const {
return Point(y * A.z - z * A.y, z * A.x - x * A.z, x * A.y - y * A.x);
}
double len() {
return sqrt(x * x + y * y + z * z);
}
} P[N], H[N * N];
double val[N * N];
int n, F[N][N], m, Htot = 0;
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &P[i].x, &P[i].y, &P[i].z);
for (int i = 1; i <= m; ++i) {
scanf("%d", &F[i][0]);
for (int j = 1; j <= F[i][0]; ++j)
scanf("%d", &F[i][j]);
}
Point u = P[1];
for (int i = 1; i <= m; ++i) {
Point u2 = P[F[i][1]], v1, v2;
for (int j = 2; j < F[i][0]; ++j) {
v1 = P[F[i][j]]; v2 = P[F[i][j + 1]];
H[++Htot] = (u + u2 + v1 + v2) / 4;
val[Htot] = fabs(((v1 - u2) ^ (v2 - u2)) * (u - u2));
}
}
double valtot = 0;
u = Point(0, 0, 0);
for (int i = 1; i <= Htot; ++i) {
valtot += val[i];
u = u + Point(H[i].x * val[i], H[i].y * val[i], H[i].z * val[i]);
}
u = u / valtot;
for (int i = 1; i <= m; ++i) {
double ans = 0, co;
Point u1, u2, u3;
for (int j = 1, s1, s2; j <= F[i][0]; ++j) {
s1 = j + 1; if (s1 > F[i][0]) s1 = 1;
s2 = s1 + 1; if (s2 > F[i][0]) s2 = 1;
u1 = P[F[i][j]] - u;
u2 = P[F[i][s1]] - u;
u3 = P[F[i][s2]] - u;
u1 = (u1 ^ u2);
u3 = (u3 ^ u2);
co = u1 * u3 / u1.len() / u3.len();
ans += acos(co);
}
ans -= (F[i][0] - 2) * Pi;
printf("%.7lf
", ans / Pi / 4);
}
return 0;
}