zoukankan      html  css  js  c++  java
  • 123. Best Time to Buy and Sell Stock III ——LeetCode

    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

    Example 1:

    Input: [3,3,5,0,0,3,1,4]
    Output: 6
    Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
                 Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

    Example 2:

    Input: [1,2,3,4,5]
    Output: 4
    Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
                 Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
                 engaging multiple transactions at the same time. You must sell before buying again.
    

    Example 3:

    Input: [7,6,4,3,1]
    Output: 0
    Explanation: In this case, no transaction is done, i.e. max profit = 0.

     题目大意:与之前的题目类似,不过这次有次数限制。最多两次买卖,问最大获利。

    思路:如果将数组拆成两半,那么每一半都可以用Best Time to Buy and Sell Stock I 题目中的方式获取到最大获利,前后加起来,就是最大获利。用left[i]表示从0到i的最大获利,遍历一遍可求得。用right[i]表示从i到length-1的最大获利,从右向左遍历一遍可获得。从左往右遍历时,一边找最小price一边更新max获利;从右往左遍历时,一边找最大price,一边更新当前max获利。两遍遍历,时间复杂度O(n),讨论区还有一遍遍历的解法,有兴趣可以去看看。

        public static int maxProfit(int[] prices) {
            if (prices == null || prices.length <= 1) {
                return 0;
            }
            int[] left = new int[prices.length];
            int[] right = new int[prices.length];
            int min = prices[0];
            for (int i = 1; i < prices.length; i++) {
                left[i] = Math.max(prices[i] - min, left[i - 1]);
                min = Math.min(min, prices[i]);
            }
            int max = prices[prices.length - 1];
            int res = 0;
            for (int i = prices.length - 2; i >= 0; i--) {
                right[i] = Math.max(max - prices[i], right[i + 1]);
                max = Math.max(max, prices[i]);
                res = Math.max(left[i] + right[i], res);
            }
            return res;
        }

  • 相关阅读:
    08 组件组合使用
    07 React 组件三大属性-----refs
    06 组件三大属性 ----- props
    05 组件三大属性----state
    04 定义组件的两种方式
    03 动态展示列表数据
    02 创建虚拟DOM的两种方式
    C++动多态和静多态
    django1.7+nginx1.4.4的static配置
    redis client API-----------python
  • 原文地址:https://www.cnblogs.com/aboutblank/p/9647253.html
Copyright © 2011-2022 走看看