大概这一题题意:
给你n=2500个点,生成方式给你了
设Ln表示这n个点两两连出来的直线(去重后,例如(1 1) (2 2) (3 3)只有一条直线)
问这些直线之间两两一共有多少个交点
(两条线交在一起算2次,因为A交B一次,B交A一次)
三条线交在一个点算6次,因为AB,AC,BA,BC,CA,CB)
做法:
我们只要考虑平行的,没有交,不平行的都有交,这样就把复杂度弄到n^2级别了
用分数类统计以后直接计算即可
代码(分数类板子比较重要...):
#include<set>
#include<map>
#include<list>
#include<queue>
#include<stack>
#include<string>
#include<time.h>
#include<math.h>
#include<memory>
#include<vector>
#include<bitset>
#include<fstream>
#include<stdio.h>
#include<utility>
#include<sstream>
#include<string.h>
#include<iostream>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int new_s()
{
static int s=290797;
s=(long long)s*s%50515093;
return s;
}
struct point
{
int x;
int y;
void get()
{
x=new_s()%2000-1000;
y=new_s()%2000-1000;
}
};
int get_sgn(int x)
{
if (x==0) return 0;
if (x>0) return 1;
return -1;
}
struct fenshu
{
int fenzi;
int fenmu;
int sgn() const
{
return get_sgn(fenzi)*get_sgn(fenmu);
}
fenshu (int x=0,int y=1)
{
fenzi=x;
fenmu=y;
}
friend fenshu operator / (const fenshu &a,const fenshu &b)
{
return fenshu(a.fenzi*b.fenmu,b.fenzi*a.fenmu);
}
friend fenshu operator * (int k,const fenshu &b)
{
return fenshu(k*b.fenzi,b.fenmu);
}
friend fenshu operator * (const fenshu &b,int k)
{
return fenshu(k*b.fenzi,b.fenmu);
}
friend fenshu operator - (int y,const fenshu &a)
{
return fenshu(y*a.fenmu-a.fenzi,a.fenmu);
}
friend bool operator == (const fenshu &a,const fenshu &b)
{
if ((a.fenmu==0)^(b.fenmu==0)) return false;
return (long long)a.fenzi*b.fenmu==(long long)a.fenmu*b.fenzi;
}
friend bool operator < (fenshu a,fenshu b)
{
if (a.fenmu==0) return false;
if (b.fenmu==0) return true;
int k1=a.sgn();
int k2=b.sgn();
if (k1!=k2)
{
return k1<k2;
}
if (a.fenzi<0) a.fenzi=-a.fenzi;
if (a.fenmu<0) a.fenmu=-a.fenmu;
if (b.fenzi<0) b.fenzi=-b.fenzi;
if (b.fenmu<0) b.fenmu=-b.fenmu;
if (k1==-1)
{
return (long long)a.fenzi*b.fenmu>(long long)a.fenmu*b.fenzi;
}
else
{
return (long long)a.fenzi*b.fenmu<(long long)a.fenmu*b.fenzi;
}
}
};
point a[2505];
//#define fenshu long double
struct line
{
fenshu k;
fenshu b;
line ()
{
}
line (point a,point bb)
{
#ifdef fenshu
k=(double)(a.y-bb.y)/(a.x-bb.x);
#else
k=fenshu(a.y-bb.y,a.x-bb.x);
#endif
if (a.x==bb.x)
{
#ifdef fenshu
k=1e300;
b=a.x;
#else
k=fenshu(1,0);
b=fenshu(a.x,1);
#endif
}
else
{
b=a.y-k*a.x;
}
}
friend bool operator < (const line &a,const line &b)
{
if ((a.k<b.k)||(b.k<a.k)) return a.k<b.k;
return a.b<b.b;
}
friend bool operator == (const line &a,const line &b)
{
return (a.k==b.k)&&(a.b==b.b);
}
};
line b[50000005];
int main()
{
freopen("output.txt","w",stdout);
int n=2500;
int i;
for (i=0;i<n;i++)
{
a[i].get();
}
int cnt=0;
int j;
for (i=0;i<n;i++)
{
for (j=i+1;j<n;j++)
{
if ((a[i].x==a[j].x)&&(a[i].y==a[j].y)) continue;
b[cnt++]=line(a[i],a[j]);
}
}
sort(b,b+cnt);
cnt=unique(b,b+cnt)-b;
cout<<cnt<<endl;
long long ans=0;
ans=(long long)cnt*(cnt-1);
int now=1;
for (i=1;i<cnt;i++)
{
//printf("%.12lf
",b[i].k);
if (b[i].k==b[i-1].k)
{
now++;
}
else
{
//if (now>1) printf("%d
",now);
ans-=(long long)now*(now-1);
now=1;
}
}
ans-=(long long)now*(now-1);
cout<<ans<<endl;
return 0;
}