zoukankan      html  css  js  c++  java
  • POJ 3680 Intervals 离散 + 费用流

    Intervals
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 6246   Accepted: 2542

    Description

    You are given N weighted open intervals. The ith interval covers (ai, bi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.

    Input

    The first line of input is the number of test case.
    The first line of each test case contains two integers, N and K (1 ≤ KN ≤ 200).
    The next N line each contain three integers ai, bi, wi(1 ≤ ai < bi ≤ 100,000, 1 ≤ wi ≤ 100,000) describing the intervals.
    There is a blank line before each test case.

    Output

    For each test case output the maximum total weights in a separate line.

    Sample Input

    4
    
    3 1
    1 2 2
    2 3 4
    3 4 8
    
    3 1
    1 3 2
    2 3 4
    3 4 8
    
    3 1
    1 100000 100000
    1 2 3
    100 200 300
    
    3 2
    1 100000 100000
    1 150 301
    100 200 300
    

    Sample Output

    14
    12
    100000
    100301
    

    Source

    POJ Founder Monthly Contest – 2008.07.27, windy7926778

     

    题目大意:给你 n 个开区间,区间有权值,问如何选择区间使得每个点上覆盖的区间数不超过 k 个的前提下获得的最大权值和。

    题目分析:做之前正好看过大白鼠的方法,所以过的没压力。首先,先对区间的端点进行离散化,之后对每个区间的左端点u和右端点v建边(u,v,1,-w),再对每个坐标点 i 建边(i,i + 1,k,0),设离散后最大的点的坐标为x,建立源汇点s = 0, t = x + 1,建边(x,t,1,0)。跑一次最小费用最大流,结果即花费的相反数。

     

    代码如下:

    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #define min(a, b) ((a) < (b) ? (a) : (b))
    #define REP(i, n) for(int i = 0; i < n; ++i)
    #define MS0(X) memset(X,  0, sizeof X)
    #define MS1(X) memset(X, -1, sizeof X)
    using namespace std;
    const int maxE = 3000000;
    const int maxN = 500;
    const int maxM = 55;
    const int oo = 0x3f3f3f3f;
    struct Edge{
        int v, c, w, n;
    };
    Edge edge[maxE];
    int adj[maxN], l;
    int d[maxN], cur[maxN], Minflow;
    int inq[maxN], Q[maxE], head, tail;
    int cost, flow, s, t;
    int n, m, cnt;
    struct Node{
        int l, r, w;
    }a[maxN];
    int b[maxN];
    void addedge(int u, int v, int c, int w){
        edge[l].v = v; edge[l].c = c; edge[l].w =  w; edge[l].n = adj[u]; adj[u] = l++;
        edge[l].v = u; edge[l].c = 0; edge[l].w = -w; edge[l].n = adj[v]; adj[v] = l++;
    }
    int SPFA(){
        memset(d, oo, sizeof d);
        memset(inq, 0, sizeof inq);
        head = tail = 0;
        d[s] = 0;
        Minflow = oo;
        cur[s] = -1;
        Q[tail++] = s;
        while(head != tail){
            int u =  Q[head++];
            inq[u] = 0;
            for(int i = adj[u]; ~i; i = edge[i].n){
                int v = edge[i].v;
                if(edge[i].c && d[v] > d[u] + edge[i].w){
                    d[v] = d[u] + edge[i].w;
                    cur[v] = i;
                    Minflow = min(edge[i].c, Minflow);
                    if(!inq[v]){
                        inq[v] = 1;
                        Q[tail++] = v;
                    }
                }
            }
        }
        if(d[t] == oo) return 0;
        flow += Minflow;
        cost += Minflow * d[t];
        for(int i = cur[t]; ~i; i = cur[edge[i ^ 1].v]){
            edge[i].c -= Minflow;
            edge[i ^ 1].c += Minflow;
        }
        return 1;
    }
    int MCMF(){
        flow = cost = 0;
        while(SPFA());
        return cost;
    }
    void work(){
        MS1(adj);
        l = 0;
        scanf("%d%d", &n, &m);
        REP(i, n) scanf("%d%d%d", &a[i].l, &a[i].r, &a[i].w);
        cnt = 0;
        REP(i, n){
            b[cnt++] = a[i].l;
            b[cnt++] = a[i].r;
        }
        sort(b, b + cnt);
        int cnt1 = 0;
        REP(i, cnt) if(i && b[i] != b[cnt1]) b[++cnt1] = b[i];
        cnt = ++cnt1;
        //不会离散化就这么蠢蠢的离散好了QvQ
        REP(i, n) REP(j, cnt) if(a[i].l == b[j]){
            a[i].l = j;
            break;
        }
        REP(i, n) REP(j, cnt) if(a[i].r == b[j]){
            a[i].r = j;
            break;
        }
        s = 0; t = cnt;
        REP(i, n) addedge(a[i].l, a[i].r, 1, -a[i].w);
        REP(i, cnt) addedge(i, i + 1, m, 0);
        printf("%d
    ", -MCMF());
    }
    int main(){
        int T, cas;
        for(scanf("%d", &T), cas = 1; cas <= T; ++cas) work();
        return 0;
    }
    POJ 3680
  • 相关阅读:
    【Xamarin开发 Android 系列 6】 Android 结构基础(上)
    SQL语句,标准表达式中数据类型不匹配
    VS工程目录下的ipch文件夹和.sdf文件
    VS2013和VS2010工具集和字符集
    SQL语句:语法错误(操作符丢失)在查询表达式中
    数据库改动后,发现第二张图片不能存储并显示
    BEGIN_MESSAGE_MAP(Caccess_test_1Dlg, CDialogEx)
    error C2678: 二进制“+”: 没有找到接受“const char [22]”类型的左操作数的运算符(或没有可接受的转换)没有与这些操作数匹配的“+”运算符
    MFC中给控件添加变量,DoDataExchange中
    数据库添加表时设置表名为中文
  • 原文地址:https://www.cnblogs.com/ac-luna/p/3760102.html
Copyright © 2011-2022 走看看