zoukankan      html  css  js  c++  java
  • poj 1106 Transmitters (枚举+叉积运用)

    题目链接:http://poj.org/problem?id=1106

    算法思路:由于圆心和半径都确定,又是180度,这里枚举过一点的直径,求出这个直径的一个在圆上的端点,就可以用叉积的大于,等于,小于0判断点在直径上,左,右。 这里要记录直径两边的加直径上的点的个数,去最大的。

    代码:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    
    const double eps = 1e-8;
    const double PI = acos(-1.0);
    const double INF = 1000000000000000.000;
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0) : x(x),y(y){ }    //构造函数
    };
    typedef Point Vector;
    
    struct Circle{
         Point c;
         double r;
         Circle() {}
         Circle(Point c,double r): c(c),r(r) {}
    };
    Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator * (double p,Vector A){return Vector(A.x*p,A.y*p);}
    Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);}
    
    bool operator < (const Point& a,const Point& b){
        return a.x < b.x ||( a.x == b.x && a.y < b.y);
    }
    
    int dcmp(double x){
        if(fabs(x) < eps) return 0;
        else              return x < 0 ? -1 : 1;
    }
    bool operator == (const Point& a, const Point& b){
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    ///向量(x,y)的极角用atan2(y,x);
    inline double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
    inline double Length(Vector A)    { return sqrt(Dot(A,A)); }
    inline double Angle(Vector A, Vector B)  { return acos(Dot(A,B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B)  { return A.x*B.y - A.y * B.x; }
    Vector vecunit(Vector v){ return v / Length(v);} //单位向量
    
    Point read_point(){
        Point A;
        scanf("%lf %lf",&A.x,&A.y);
        return A;
    }
    
    
    //多边形
    //求面积
    double PolygonArea(Point* p,int n){   //n个点
        double area = 0;
        for(int i=1;i<n-1;i++){
            area += Cross(p[i]-p[0],p[i+1]-p[0]);
        }
        return area/2;
    }
    
    /*************************************分 割 线*****************************************/
    
    int main()
    {
        //freopen("E:\acm\input.txt","r",stdin);
    
        Point O,P[155];
        double R;
    
        while(scanf("%lf %lf %lf",&O.x,&O.y,&R) == 3  && dcmp(R)>0)
        {
            int N;
            cin>>N;
            int cnt = 0;
            for(int i=1;i<=N;i++)
            {
                Point temp = read_point();
                double len = Length(temp-O);
                if(dcmp(len-R) > 0) continue;
                P[++cnt] = temp;
            }
            int ans = 0;
            for(int i=1; i<=cnt; i++)
            {
                if(P[i] == O)
                {
                    ans = max(ans,1);
                    continue;
                }
                int lnum = 1;
                int rnum = 1;
                Vector v = P[i] - O;
                v = (-1.0)*vecunit(v);
                Point T = O + R*v;
                for(int j=1; j<=cnt; j++)
                {
                    if(i == j) continue;
                    if(dcmp(Cross(P[j]-T,O-T)) > 0 )      lnum++;
                    else if(dcmp(Cross(P[j]-T,O-T)) == 0) lnum++,rnum++;
                    else                                  rnum++;
                }
    
                int num = max(lnum,rnum);
                ans = max(ans,num);
            }
            printf("%d
    ",ans);
        }
    }
    View Code
  • 相关阅读:
    python的Collections 模块
    python模块
    python类
    python异常
    python文件处理
    python函数
    python字符串
    python数据结构
    python循环
    下载Google Play外国区APP技巧
  • 原文地址:https://www.cnblogs.com/acmdeweilai/p/3352748.html
Copyright © 2011-2022 走看看