首先判断是否相交,就是枚举3*3对边的相交关系。
如果不相交,判断包含还是相离,就是判断点在三角形内还是三角形外。两边各判断一次。
//http://acm.fzu.edu.cn/problem.php?pid=2273 #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; const double eps=1e-8; const double pi=acos(-1.0); int sgn(double x) { if (fabs(x)<eps) return 0; if (x<0) return -1; return 1; } struct Point { double x,y; Point() {} Point(double _x,double _y) { x=_x; y=_y; } Point operator +(const Point &b) const { return Point(x+b.x,y+b.x); } Point operator -(const Point &b) const { // return Point(x-b.x,y-b.x); return Point(x-b.x,y-b.y); } double operator ^(const Point &b) const { return x*b.y-y*b.x; } double operator *(const Point &b) const { return x*b.x+y*b.y; } Point operator /(const double b) const { return Point(x/b,y/b); } }; struct Line { Point s,e; Line() {} Line(Point _s,Point _e) { s=_s; e=_e; } }; double dist(Point a,Point b) { return sqrt((a-b)*(a-b)); } bool inter(Line l1,Line l2) { return max(l1.s.x,l1.e.x)>=min(l2.s.x,l2.e.x) && max(l2.s.x,l2.e.x)>=min(l1.s.x,l1.e.x) && max(l1.s.y,l1.e.y)>=min(l2.s.y,l2.e.y) && max(l2.s.y,l2.e.y)>=min(l1.s.y,l1.e.y) && sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e))<=0 && sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e))<=0; } Point o; bool _cmp(Point p1,Point p2) { double tmp=(p1-o)^(p2-o); if (sgn(tmp)>0) return true; else if (sgn(tmp)==0 && sgn(dist(p1,o)-dist(p2,o))<=0) return true; else return false; } bool OnSeg(Point P,Line L) { return sgn((L.s-P)^(L.e-P))==0 && sgn((P.x-L.s.x)*(P.x-L.e.x))<=0 && sgn((P.y-L.s.y)*(P.y-L.e.y))<=0; } int inConvexPoly(Point a,Point p[],int n) { for (int i=0;i<n;i++) { if (sgn((p[i]-a)^(p[(i+1)%n]-a))<0) return -1; // out else if (OnSeg(a,Line(p[i],p[(i+1)%n]))) return 0; // on } return 1; // in } Point p[6]; int main() { int t; scanf("%d",&t); while (t--) { for (int i=0;i<6;i++) scanf("%lf%lf",&p[i].x,&p[i].y); bool xj=false; for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { Line l1=Line(p[i],p[(i+1)%3]); Line l2=Line(p[j+3],p[(j+1)%3+3]); if (inter(l1,l2)) { xj=true; break; } } if (xj) break; } if (xj) { printf("intersect "); continue; } int in1=0,in2=0; o=(p[0]+p[1]+p[2])/3.0; sort(p,p+3,_cmp); o=(p[3]+p[4]+p[5])/3.0; sort(p+3,p+6,_cmp); for (int i=0;i<3;i++) { if (inConvexPoly(p[i],p+3,3)==1) in1++; if (inConvexPoly(p[i+3],p,3)==1) in2++; } if (in1==3||in2==3) printf("contain "); else printf("disjoint "); } return 0; }