zoukankan      html  css  js  c++  java
  • Popular Cows 强连通(kosaraju)

    Popular Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 30652   Accepted: 12439

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.

    Input

    * Line 1: Two space-separated integers, N and M

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow.

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1
    

    Hint

    Cow 3 is the only cow of high popularity.

    Source

     

    正向dfs 把顶点标号 反向dfs找出强连通分量。将强连通分量缩点构成DAG。只有一个强连通分量符合条件,只要DAG最后一个强连通分量反向dfs即可,只要全部到达既满足。否则,有多个出度为0的缩点。

     

    #include <cstdio>
    #include <vector>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    int n,k;
    const int maxn=10010;
    vector<int> g[maxn];
    int V;//顶点
    vector<int> rg[maxn],vs;
    bool used[maxn];
    int belong[maxn];
    
    void add_edge(int from,int to){
        g[from].push_back(to);
        rg[to].push_back(from);
    }
    
    void dfs(int v){
        used[v]=1;
        for(int i=0;i<g[v].size();i++){
            if(!used[g[v][i]]) dfs(g[v][i]);
        }
        vs.push_back(v);
    }
    
    void rdfs(int v,int k){
        used[v]=1;
        belong[v]=k;
        for(int i=0;i<rg[v].size();i++)
            if(!used[rg[v][i]]) rdfs(rg[v][i],k);
    }
    int scc(){
        k=0;
        memset(used,0,sizeof(used));
        vs.clear();
        for(int v=1;v<=n;v++){
            if(!used[v]) dfs(v);
        }
        memset(used,0,sizeof(used));
        for(int i=vs.size()-1;i>=0;i--)
            if(!used[vs[i]])    rdfs(vs[i],k++);
        return k;
    }
    int main(){
        int m,a,b;
        //freopen("data.in","r",stdin);
        while(~scanf("%d%d",&n,&m)){
            for(int i=0;i<m;i++){
                scanf("%d%d",&a,&b);
                add_edge(a,b);
            }
            int nn= scc(),u=0,num=0;
            //统计备选解的个数
            for(int i=1;i<=n;i++){
                if(belong[i]==nn-1){
                    u=i;num++;
                }
            }
            //检查是否从所有点可达
            memset(used,0,sizeof(used));
            rdfs(u,0);
            for(int v=1;v<=n;v++){
                if(!used[v]){
                    num=0;break;
                }
            }
            printf("%d
    ",num);
        }
    }
  • 相关阅读:
    C++Josephus问题
    C++背包示例
    C++1000以内的质数
    as3+asp+access编码
    fb设置flashplayer
    三视图示例
    正确实现 IDisposable 接口
    .net垃圾回收和CLR 4.0对垃圾回收所做的改进之二
    .net垃圾回收和CLR 4.0对垃圾回收所做的改进之三
    CLR 全面透彻解析:大型对象堆揭秘
  • 原文地址:https://www.cnblogs.com/acmtime/p/5789742.html
Copyright © 2011-2022 走看看