zoukankan      html  css  js  c++  java
  • (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

    9 = 7 + 2×12
    15 = 7 + 2×22
    21 = 3 + 2×32
    25 = 7 + 2×32
    27 = 19 + 2×22
    33 = 31 + 2×12

    It turns out that the conjecture was false.

    What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

    题目大意:

    Christian Goldbach 提出每个奇合数都可以写作一个质数与一个平方数的二倍之和:

    9 = 7 + 2×12
    15 = 7 + 2×22
    21 = 3 + 2×32
    25 = 7 + 2×32
    27 = 19 + 2×22
    33 = 31 + 2×12

    但是这个推测是错误的。

    最小的不能写作一个质数与一个平方数的二倍之和的奇合数是多少?

    //(Problem 46)Goldbach's other conjecture
    // Completed on Fri, 26 Jul 2013, 16:58
    // Language: C11
    //
    // 版权所有(C)acutus   (mail: acutus@126.com) 
    // 博客地址:http://www.cnblogs.com/acutus/
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<ctype.h>
    #include<stdlib.h>
    #include<stdbool.h>
    
    bool issquare(int n)  //判断一个自然数是否为一个平方数
    {
        if(ceil(sqrt(n))*ceil(sqrt(n))==n) return true;
        else return false;
    }
    
    bool isprim(int n)  //素数判断
    {
        for(int i=2; i*i<=n; i++)
        {
            if(n%i==0) return false;
        }
        return true;
    }
    
    bool judge(long long n)
    {
        int i=1;
        long long t;
        while((t=(n-2*(i*i)))>0)
        {
            if(isprim(t)) return true;
            i++;
        }
        return false;
    }
    
    int main()
    {
        for(long long i=1001; i<100000000; i=i+2)
        {
            if(!isprim(i) && !judge(i)) 
            {
                printf("%lld
    ",i);
                break;
            }
        }
        return 0;
    }
    Answer:
    5777
  • 相关阅读:
    Datatable导出到Excel
    C# 连接EXCEL和ACCESS字符串2003及2007版字符串说明
    C#-读取写入Excel
    简易的命令行入门教程:
    日志记录
    python环境管理器的选择
    go语言的模块处理
    pip 使用国内源 安装类库
    go 实现单链表并使用一种常规实现翻转,一种使用递归实现翻转
    数据库产品选型
  • 原文地址:https://www.cnblogs.com/acutus/p/3553418.html
Copyright © 2011-2022 走看看