zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article


    Print Article

    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.

    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.

    Now Zero want to know the minimum cost in order to arrange the article perfectly.

    input 

     There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.

    ouput

    A single number, meaning the mininum cost to print the article.

     5 5 5 9 5 7 5

    230

     第一道斜率题目,总之做dp很苦逼。事情是这个样子的------首先列出dp方程

    很显然的一个方程 dp[i]=min(dp[i],dp[j]+(sum[i]-sum[j])^2) . 复杂度O(n^2) 

    直接用的话TLE.

    要用到斜率优化。 考虑 k<j<i ,时如果 在j点比k点更优则有

    dp[j]+[sum(i)-sum(j)]^2 <dp[k]+[sum(i)-sum(k)]^2

    整理可得 (dp[j]-sum[j]^2)-(dp[k]-sum[k]^2) <sum[i]*2*(sum[j]-sum[k]);

    得到一个类似   y1-y2<k*(x1-x2); 的式子。然后考虑到这个式子的成立很容易得知

    整个优先队列所要保存的点必须呈现斜率上升的趋势,否则直接将此点抛弃。

     边维护单调队列边求出dp值时间复杂度是O 

      1 #include<cstdio>

     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 const int MAX = 500000+10;
     6 int n,m;
     7 int dp[MAX],num[MAX];
     8 int deq[MAX],sum[MAX];
     9 int gety(int j,int k)
    10 {
    11     return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
    12 }
    13 int getx(int j,int k)
    14 {
    15     return 2*(sum[j]-sum[k]);
    16 }
    17 int getdp(int i,int j)
    18 {
    19     return dp[j]+(sum[j]-sum[i])*(sum[j]-sum[i])+m;
    20 }
    21 int main()
    22 {
    23 
    24     while(scanf("%d %d",&n,&m)==2)
    25     {
    26         sum[0]=0;
    27         for(int i=1;i<=n;i++)
    28         {
    29             scanf("%d",&num[i]);
    30             sum[i]=sum[i-1]+num[i];
    31         }
    32         memset(dp,0,sizeof(dp));
    33         int front=0,rear=0;
    34         for(int i=1;i<=n;i++)
    35         {
    36             while(front+1<rear&&gety(deq[front+1],deq[front])<=sum[i]*getx(deq[front+1],deq[front]))
    37             front++;
    38             dp[i]=getdp(i,deq[front]);
    39             while(front+1<rear&&gety(i,deq[rear-1])*getx(deq[rear-1],deq[rear-2])<gety(deq[rear-1],deq[rear-2])*getx(i,deq[rear-1]))
    40             rear--;
    41 
    42             deq[rear++]=i;
    43 
    44         }
    45         printf("%d ",dp[n]);
    46     }
    47     return 0;
    48 }


  • 相关阅读:
    SQL舊面版與標准版不能互導數據
    今天總算可以繼續寫日記了
    MDAC2.7没有安装,控件不能运行
    希望5月份网络能开通
    SQLITE入门逐步讲解SQLITE命令行(一)
    C#使用SQLite数据库的代码示例
    红外遥控 Arduino 实例
    SQLite数据库是中小站点CMS的最佳选择
    防止 SQLite 数据库被下载的方法
    关于Linux下的Grep命令简介
  • 原文地址:https://www.cnblogs.com/acvc/p/3631528.html
Copyright © 2011-2022 走看看