zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article


    Print Article

    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.

    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.

    Now Zero want to know the minimum cost in order to arrange the article perfectly.

    input 

     There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.

    ouput

    A single number, meaning the mininum cost to print the article.

     5 5 5 9 5 7 5

    230

     第一道斜率题目,总之做dp很苦逼。事情是这个样子的------首先列出dp方程

    很显然的一个方程 dp[i]=min(dp[i],dp[j]+(sum[i]-sum[j])^2) . 复杂度O(n^2) 

    直接用的话TLE.

    要用到斜率优化。 考虑 k<j<i ,时如果 在j点比k点更优则有

    dp[j]+[sum(i)-sum(j)]^2 <dp[k]+[sum(i)-sum(k)]^2

    整理可得 (dp[j]-sum[j]^2)-(dp[k]-sum[k]^2) <sum[i]*2*(sum[j]-sum[k]);

    得到一个类似   y1-y2<k*(x1-x2); 的式子。然后考虑到这个式子的成立很容易得知

    整个优先队列所要保存的点必须呈现斜率上升的趋势,否则直接将此点抛弃。

     边维护单调队列边求出dp值时间复杂度是O 

      1 #include<cstdio>

     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 const int MAX = 500000+10;
     6 int n,m;
     7 int dp[MAX],num[MAX];
     8 int deq[MAX],sum[MAX];
     9 int gety(int j,int k)
    10 {
    11     return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
    12 }
    13 int getx(int j,int k)
    14 {
    15     return 2*(sum[j]-sum[k]);
    16 }
    17 int getdp(int i,int j)
    18 {
    19     return dp[j]+(sum[j]-sum[i])*(sum[j]-sum[i])+m;
    20 }
    21 int main()
    22 {
    23 
    24     while(scanf("%d %d",&n,&m)==2)
    25     {
    26         sum[0]=0;
    27         for(int i=1;i<=n;i++)
    28         {
    29             scanf("%d",&num[i]);
    30             sum[i]=sum[i-1]+num[i];
    31         }
    32         memset(dp,0,sizeof(dp));
    33         int front=0,rear=0;
    34         for(int i=1;i<=n;i++)
    35         {
    36             while(front+1<rear&&gety(deq[front+1],deq[front])<=sum[i]*getx(deq[front+1],deq[front]))
    37             front++;
    38             dp[i]=getdp(i,deq[front]);
    39             while(front+1<rear&&gety(i,deq[rear-1])*getx(deq[rear-1],deq[rear-2])<gety(deq[rear-1],deq[rear-2])*getx(i,deq[rear-1]))
    40             rear--;
    41 
    42             deq[rear++]=i;
    43 
    44         }
    45         printf("%d ",dp[n]);
    46     }
    47     return 0;
    48 }


  • 相关阅读:
    bzoj 1407: [Noi2002]Savage【扩展欧几里得+中国剩余定理】
    bzoj 2142: 礼物【中国剩余定理+组合数学】
    BSGS
    bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】
    bzoj 3122: [Sdoi2013]随机数生成器【BSGS】
    bzoj 3239: Discrete Logging && 2480: Spoj3105 Mod【BSGS】
    bzoj 1180: [CROATIAN2009]OTOCI【LCT】
    51nod 1122 机器人走方格 V4 【矩阵快速幂】
    51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】
    51nod 1119 机器人走方格 V2 【组合数学】
  • 原文地址:https://www.cnblogs.com/acvc/p/3631528.html
Copyright © 2011-2022 走看看