zoukankan      html  css  js  c++  java
  • Ubuntu Python 安装numpy SciPy、MatPlotLib环境

    安装

    sudo apt-get install python-scipy
    sudo apt-get install python-numpy
    sudo apt-get install python-matplotlib

    测试

    #test plot
    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
    from matplotlib import cm
    
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    X, Y, Z = axes3d.get_test_data(0.05)
    ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
    cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
    
    ax.set_xlabel('X')
    ax.set_xlim(-40, 40)
    ax.set_ylabel('Y')
    ax.set_ylim(-40, 40)
    ax.set_zlabel('Z')
    ax.set_zlim(-100, 100)
    
    plt.show()
    
    
    #test numpy
    from numpy import *
    print random.rand(4,4)
    
    
    #test scipy
    import numpy as np
    from scipy.stats import beta
    from matplotlib.pyplot import hist, plot, show
    
    obs = beta.rvs(5, 5, size=2000)  # 2000 observations
    hist(obs, bins=40, normed=True)
    grid = np.linspace(0.01, 0.99, 100)
    plot(grid, beta.pdf(grid, 5, 5), 'k-', linewidth=2)
    show()

    [[ 0.65980666  0.55674039  0.15432447  0.63885279]
     [ 0.77583865  0.78290332  0.31575893  0.12678885]
     [ 0.67791378  0.86333224  0.97039675  0.95323786]
     [ 0.31306339  0.54107452  0.79611926  0.05306962]]
     

  • 相关阅读:
    19-1 在页面中渲染基本的组件
    19 使用Vue实例的render方法渲染组件
    17 webpack中babel的配置
    前端待复习汇总
    301,302,303,307重定向区别
    尾递归
    Binary-to-text ecoding:
    object Object {} any unknown
    Vue中的model
    全局namespace与模块内的namespace
  • 原文地址:https://www.cnblogs.com/adong7639/p/7257970.html
Copyright © 2011-2022 走看看