一、HashMap的数据结构:
数组、链表、红黑树
二、HashMap参数:
负载因子(衡量时间和空间) load_factor 0.75
树化阈值 (应对最坏情况) treeify_threshold 8
树化最小容量 MIN_TREEIFY_CAPACITY 64
树化的意义:最坏情况处理,使算法在hash冲突严重的情况下仍然有良好的性能。
capacity * load_factor 才是一个hashmap结构中实际可以存放的元素数量,元素数量超过这个数值会引起扩容。
三、hash计算
HashMap的容量总是2的n次幂,采用的是散列算法是余数法(n-1)&hash,这导致hashcode的高位字节会被忽略。HashMap认为对象的hashCode本身具有良好的分布,且已经使用了树化来应对糟糕的情况,所以它使用高位低位异或来作为真正使用的hash值。
/** * Computes key.hashCode() and spreads (XORs) higher bits of hash * to lower. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don't benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
四、put流程分析
put函数对hash值对应的节点做新增或更新操作,新增时需要考虑扩容,更新时需要考虑onlyIfAbsent参数
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 初始化数据结构,初始化也是通过resize来实现的 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // put函数的处理包括新增和更新,新增需要考虑扩容,修改需要考虑onlyIfAbsent // 1、桶上无元素、新增 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 2、桶上第一个元素就是想要操作的位置,更新操作 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 3、在链表或者树中新增或者更新,更新时不会直接覆盖旧值 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 4、对于更新操作判断是否可以覆盖,函数直接返回 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } // 5、更新不会引起ConcurrentModifyException,新增操作需要考虑扩容 ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
五、resize流程
resize函数执行初始化数据结构或者扩容操作,二者都需要计算新的容量和阈值。扩容的时候容量和阈值都乘以二,初始化的时候使用负载因子和容量的乘积计算阈值。扩容需要迁移元素,而初始化不需要。
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { // resize函数执行初始化数据结构或者扩容操作,二者都需要计算新的容量和阈值 // 扩容的时候容量和阈值都乘以二,初始化的时候使用负载因子和容量的乘积计算阈值 // 扩容需要迁移元素 Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; // 只有扩容才需要迁移元素 if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; // 只有一个元素的时候直接放在新数组里 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { // jdk1.8 链表迁移修改了尾部插入,避免了并发扩容的死循环问题,hashmap本身不支持并发 next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
六、红黑树拆分
红黑树可能拆分成两个,高位一个,低位一个,此时需要转换成链表或者重新树化。也可能没有拆分,这个时候就不需要重新树化了。
/** * Splits nodes in a tree bin into lower and upper tree bins, * or untreeifies if now too small. Called only from resize; * see above discussion about split bits and indices. * * @param map the map * @param tab the table for recording bin heads * @param index the index of the table being split * @param bit the bit of hash to split on */ final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) { TreeNode<K,V> b = this; // Relink into lo and hi lists, preserving order TreeNode<K,V> loHead = null, loTail = null; TreeNode<K,V> hiHead = null, hiTail = null; int lc = 0, hc = 0; for (TreeNode<K,V> e = b, next; e != null; e = next) { next = (TreeNode<K,V>)e.next; e.next = null; if ((e.hash & bit) == 0) { if ((e.prev = loTail) == null) loHead = e; else loTail.next = e; loTail = e; ++lc; } else { if ((e.prev = hiTail) == null) hiHead = e; else hiTail.next = e; hiTail = e; ++hc; } } if (loHead != null) { if (lc <= UNTREEIFY_THRESHOLD) tab[index] = loHead.untreeify(map); else { tab[index] = loHead; if (hiHead != null) // (else is already treeified) // 只有一棵树,没有拆分,节点之间已经维持了红黑树的结构了 loHead.treeify(tab); } } if (hiHead != null) { if (hc <= UNTREEIFY_THRESHOLD) tab[index + bit] = hiHead.untreeify(map); else { tab[index + bit] = hiHead; if (loHead != null) hiHead.treeify(tab); } } }