zoukankan      html  css  js  c++  java
  • UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
    roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
    Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
    some of them are placed outside the side line so they are closer to the spectators. The organizers would
    like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
    will model the playing ground as an M  N rectangular grid. The constraints for placing cheerleaders
    are described below:
     There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
    on a corner cell would cover two sides simultaneously.
     There can be at most one cheerleader in a cell.
     All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
    The organizers would like to know, how many ways they can place the cheerleaders while maintaining
    the above constraints. Two placements are different, if there is at least one cell which contains a
    cheerleader in one of the placement but not in the other.
    Input
    The rst line of input contains a positive integer T  50, which denotes the number of test cases. T
    lines then follow each describing one test case. Each case consists of three nonnegative integers, 2  M,
    N  20 and K  500. Here M is the number of rows and N is the number of columns in the grid. K
    denotes the number of cheerleaders that must be assigned to the cells in the grid.
    Output
    For each case of input, there will be one line of output. It will rst contain the case number followed by
    the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
    formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
    modulo 1000007.
    Sample Input
    2
    2 2 1
    2 3 2
    Sample Output
    Case 1: 0
    Case 2: 2

    给你一个n*m大的操场,上面站上k个啦啦队元,每个格子最多站1人,规定第一行,最后一行,第一列,最后一列必须站有队员。一共多少种方法。

    这个题首先感觉是分类讨论,但是在计数的时候还是有些困难。那么从对立面开始思考呢?假如要求是第一行、列,最后一行、列不占人的话,那不就是很简单的C(x,y)的组合数问题了。

    现在我们第一行不站拉拉队员的状态为A。最后一行不站拉拉队员的状态为B。第一列不站拉拉队员状态为C。最后一列不站拉拉队员的站立状态为D。

    总情况为sum=C(m*n,k),根据容斥原理

    那么我要的结果ans=sum-[(A+B+C+D)-(AB+AC+AD+AC+BC+BD+CD)+(ABC+ABD+BCD)-(ABCD)]

    下面这个容斥原理怎样实现呢?用二进制表示ABCD 4个状态是否取到,sum->0,A->1,B->2,C->4,D->8,AC->3,ABCD->15。这样分成了16种状态

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 #define  M 505
     5 const int mod =1000007;
     6 long long int c[M][M];
     7 void init()//用递推公式来写组合数
     8 {
     9     memset(c,0,sizeof c);
    10     c[0][0]=1;
    11     for(int i=1;i<M;++i)
    12     {
    13         c[i][0]=c[i][i]=1;
    14         for (int j=1;j<i;++j)
    15         c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;//注意取模
    16     }
    17 }
    18 int main()
    19 {
    20     init();
    21     int t;
    22     scanf("%d",&t);
    23     int casee=0;
    24     while (t--)
    25     {
    26         int n,m,k;
    27         long long int sum=0;
    28         scanf("%d%d%d",&n,&m,&k);
    29         for (int s=0;s<16;++s)
    30         {
    31             int r=n,c1=m,bin=0;//bin来表示二进制状态
    32             if (s&1){r--;bin++;}
    33             if (s&2){r--;bin++;}
    34             if (s&4){c1--;bin++;}
    35             if (s&8){c1--;bin++;}
    36             if (bin&1)//激活状态为奇数
    37             sum=(sum+mod-c[r*c1][k])%mod;//减法取模这样写
    38             else
    39             sum=(sum+c[r*c1][k])%mod;
    40         }
    41         printf("Case %d: ",++casee);
    42         printf("%lld
    ",sum);
    43     }
    44     return 0;
    45 }
  • 相关阅读:
    HDU 1847
    HDU 1717
    KMP未优化模板、
    Codeforces Round #340 (Div. 2) B. Chocolate
    HDU 1042 N!
    HDU 1018 Big Number
    HDU 1031 Design T-Shirt
    解决Windows 7删除执行过的 EXE、Bat文件有延迟的问题
    修改Android手机的“虚拟机堆大小”和android:largeHeap来防止APP内存溢出问题
    Android引用百度定位API第三方组件后导致其它.so文件无法正常加载的问题
  • 原文地址:https://www.cnblogs.com/agenthtb/p/5990937.html
Copyright © 2011-2022 走看看