zoukankan      html  css  js  c++  java
  • POJ 3348 Cows (凸包模板+凸包面积)

    Description

    Your friend to the south is interested in building fences and turning plowshares into swords. In order to help with his overseas adventure, they are forced to save money on buying fence posts by using trees as fence posts wherever possible. Given the locations of some trees, you are to help farmers try to create the largest pasture that is possible. Not all the trees will need to be used.

    However, because you will oversee the construction of the pasture yourself, all the farmers want to know is how many cows they can put in the pasture. It is well known that a cow needs at least 50 square metres of pasture to survive.

    Input

    The first line of input contains a single integer, n (1 ≤ n ≤ 10000), containing the number of trees that grow on the available land. The next n lines contain the integer coordinates of each tree given as two integers x and y separated by one space (where -1000 ≤ x, y ≤ 1000). The integer coordinates correlate exactly to distance in metres (e.g., the distance between coordinate (10; 11) and (11; 11) is one metre).

    Output

    You are to output a single integer value, the number of cows that can survive on the largest field you can construct using the available trees.

    Sample Input

    4
    0 0
    0 101
    75 0
    75 101

    Sample Output

    151


    求凸包的面积/50

    我们求出凸包以后将凸包化成三角形用叉积求面积再加和
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <algorithm>
     5 #include <string>
     6 #include <cstring>
     7 using namespace std;
     8 const double eps = 1e-8;
     9 const double dblinf = 9999999999.9;
    10 const int maxn = 1e4+50;
    11 struct Point
    12 {
    13     double x,y;
    14 }p[maxn];
    15 int stk[maxn];
    16 int top;
    17 int dblcmp(double k)
    18 {
    19     if (fabs(k)<eps) return 0;
    20     return k>0?1:-1;
    21 }
    22 double multi (Point p0,Point p1,Point p2)//叉乘
    23 {
    24     return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
    25 }
    26 double dis (Point a,Point b)
    27 {
    28     return sqrt( (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    29 }
    30 bool anglecmp (Point a,Point b)//极角排序
    31 {
    32     int d = dblcmp(multi(p[0],a,b));
    33     if (!d) return dis(p[0],a)<dis(p[0],b);
    34     return d>0;
    35 }
    36 int n;
    37 int main()
    38 {
    39     while (~scanf("%d",&n)){
    40         double tx = dblinf,ty = dblinf;
    41         int k;
    42         for (int i=0;i<n;++i){
    43             scanf("%lf%lf",&p[i].x,&p[i].y);
    44             int d = dblcmp(ty-p[i].y);
    45             if (!d&&dblcmp(tx-p[i].x)>0){
    46                 k=i;tx = p[i].x;
    47             }
    48             else if (d>0){
    49                 k=i;
    50                 tx = p[i].x,ty = p[i].y;
    51             }
    52         }
    53         p[k].x = p[0].x,p[k].y = p[0].y;
    54         p[0].x = tx,p[0].y = ty;
    55         sort(p+1,p+n,anglecmp);
    56         stk[0] = 0,
    57         stk[1] = 1;
    58         top = 1;
    59         for (int i=2;i<n;++i){
    60             while (top>=1&&dblcmp(multi(p[stk[top-1]] , p[i], p[stk[top]] ))>=0) top--;
    61             stk[++top] = i;
    62         }
    63         double area = 0;
    64         for (int i=1;i<top;++i){
    65             area+=fabs(multi(p[stk[0]] , p[stk[i]] , p[stk[i+1]] ));
    66         }
    67         area = area /2.0;//三角形面积和别忘/2.0
    68         printf("%d
    ",(int)(area/50.0));
    69     }
    70     return 0;
    71 }
     
  • 相关阅读:
    map()和filter()函数讲解与示例
    通过假设巧妙的判断出参数的最大值和最小值
    通过函数定义数据结构list中的每个元素是一个元组,扑克牌示例
    FileCloud 的原理简述&自己搭建文件云
    opengl学习笔记
    Pascal的sin^-1函数实现
    OpenGL键盘交互响应事件
    OpenGL 鼠标交互响应事件
    重踏比尔盖茨走过的路——模拟操作系统
    Pascal代码自动格式化
  • 原文地址:https://www.cnblogs.com/agenthtb/p/7638628.html
Copyright © 2011-2022 走看看