zoukankan      html  css  js  c++  java
  • ELK-全文检索技术-使用总结

    一.概念

    1.1 基础概念

    ELK: 是ElasticSearch,LogStash以及Kibana三个产品的首字母缩写

    lucene : apache 的全文搜索引擎工具包

    elasticsearch : ElasticSearch是一个基于全文检索引擎lucene实现的一个面向文档的schema free的数据库。所有对数据库的配置、监控及操作都通过Restful接口完成。数据格式为json。默认支持节点自动发现,数据自动复制,自动分布扩展,自动负载均衡。适合处理最大千万级别的数据的检索。处理效率非常高。可以理解为elasticSearch是一个在lucene基础上增加了restful接口及分布式技术的整合。

    elasticsearch : http协议访问默认使用9200端口

    elasticsearch : tcp协议访问默认使用9300端口

    操作elasticsearch的四种方式:

    Kibana:使用http

    原始的api:使用tcp

    RestAPI:使用http

    Sde(SpringDataElasticsearch): 使用tcp

    tcp传输效率比http高

    1.2 elasticsearch概念

    Index:存储数据的逻辑区域,类似关系型数据库中的database,是文档的命名空间。如下图的湖蓝色部分所示,Index为twitter。

             Type:类似关系型数据库中的Table,是包含一系列field的json数据。储存一系列类似的field。如下图的黄色部分所示,Type为tweet。不同document里面同名的field一定要是相同类型的。

            Document:存储的实体数据,类似关系型数据库中的Row,是具体的包含一组filed的资料。如下图橙色部分所示,包含user,post_data,message三个field。

             Field:即关系型数据库中Column, Document的一个组成部分,有两个部分组成,name和value。如下图紫色部分所示 post_date及其具体的值就是一个field。

            Mapping:存储field的相关映射信息,不同document type会有不同的mapping。

            Term:不可分割的单词,搜索最小单元。不同的分析器对同样的内容的分析结果是不同的。也就得到不同的term。

            Token:一个Term呈现方式,包含这个Term的内容,在文档中的起始位置,以及类型。

            Node:对应这关系型数据库中的数据库实例。

            Cluster:由多个node组成的一组服务实例。

            Shard:关系型数据库中无此概念,是Lucene搜索的最小单元。一个index可能会存在于多个shards,不同shards可能在不同nodes。一个lucene index在es中我们称为一个shard,而es中的index则是一系列shard。当es执行search操作,会将请求发送到这个index包含的所有shard上去,然后将没一个shard上的执行结果搜集起来作为最终的结果。shard的个数在创建索引之后不能改变!

            Replica:shard的备份,有一个primary shard,其余的叫做replica shards。Elasticsearch采用的是Push Replication模式,当你往 master主分片上面索引一个文档,该分片会复制该文档(document)到剩下的所有 replica副本分片中,这些分片也会索引这个文档 

    文档的录入时,Elasticsearch通过对docid进行hash来确定其放在哪个shard上面,然后在shard上面进行索引存储。

    和数据库的对应:

    mysql数据库

    ES

    Database

    Indices   index的复数

    Table

    Type  一般一个索引库中只有一个type

    数据

    Document

    约束 列存储什么数据类型之类的

    Mapping 规定字段什么数据类型、什么分词器

    Column

    Field

    二.Kibana操作索引库

    1.     连接

     

    2.     操作

    创建类型并且制定每个字段的属性(数据类型、是否存储、是否索引、哪种分词器

    put ahd/_mapping/goods

    {

      "properties":{

        "goodsName":{

          "type":"text",

          "analyzer":"ik_max_word",

          "index":"true",

          "store":"true"

        },

        "price":{

          "type":"double",

          "index":"true",

          "store":"false"

        },

        "brand":{

          "type":"keyword",

          "index":"true",

          "store":"true"

        }

      }

    }

    查询创建的索引/映射

    get ahd/_mapping[/goods]

    分片5,副本1

    put /heima

    {

      "settings":{

        "number_of_shards":5,

        "number_of_replicas":1

      }

    }

    创建索影库2

    put ahd2

    创建索引库及其字段

    put ahd2

    {

      "mappings":{

        "goods":{

          "properties":{

            "goodsname":{

            "analyzer":"ik_max_word",

            "type":"text",

            "store":"true",

            "index":"true"

          },

          "price":{

            "type":"double",

            "index":"true",

            "store":"true"

          },

          "brand":{

            "type":"text",

            "index":"true",

            "store":"true"

          }

          }

         

        }

      }

    }

    添加一条数据:指定id的新增

    post ahd/goods/1

    {

      "goodsname":"华为p20手机",

      "brand":"华为",

      "price":2299

    }

    根据id查询记录

    get ahd/goods/1

    修改,

    post ahd/goods/1

    {

      "goodsname":"华为p20手机",

      "brand":"华为",

      "price":2599

    }

    不指定id插入一条数据

    post ahd/goods

    {

      "goodsname":"小米手机6",

      "brand":"小米",

      "price":"2500"

    }

    插入数据最好还是使用post,修改数据使用put

    使用put和使用post是一样的效果

    指定id删除一条数据

    delete ahd/goods/IkXNN2wBr0WPOOKNJpRg

    自定义模板

    1. 首先先添加一个索引库,

    put ahd3

    {

      "mappings":{

        "goods":{

           "properties":{

              "image":{

                "type":"text",

                "index":"false",

                "store":"true"

              },

              "goodsname":{

            "analyzer":"ik_max_word",

            "type":"text",

            "store":"true",

            "index":"true"

          },

          "price":{

            "type":"double",

            "index":"true",

            "store":"true"

          },

          "brand":{

            "type":"text",

            "index":"true",

            "store":"true"

          }

            }

        }

      }

    }

    在添加的这个索引库基础上添加模板(改动添加语句)

    put ahd3

    {

      "mappings":{

        "goods":{

           "properties":{

              "image":{

                "type":"text",

                "index":"false",

                "store":"true"

              },

              "goodsname":{

            "analyzer":"ik_max_word",

            "type":"text",

            "store":"true",

            "index":"true"

          },

          "price":{

            "type":"double",

            "index":"true",

            "store":"true"

          },

          "brand":{

            "type":"text",

            "index":"true",

            "store":"true"

          }

            } ,

            "dynamic_templates":[

              {

                "mystring":{

                  "match_mapping_type":"string",

                  "mapping":{

                    "type":"keyword"

                  }

                }

              }

              ]

           

        }

      }

    }

    新增数据还就只能使用post

    在ahd3中新添加一条数据

    post ahd3/goods

    {

      "goodsname":"小米6X手机",

      "price":1199,

      "image":"http://image.im.com/123.jpg",

      "brand":"小米"

    }

    查询goods document 

    get ahd3/_mapping/goods

    =====================================================================

    =====================================================================

    =========================查询(重点)==================================

    =====================================================================

    =====================================================================

    1.查询所有

    get ahd3/_search

    {

      "query":{

        "match_all": {

         

        }

      }

    }

    2.term查询:精确查询

    get ahd3/_search

    {

      "query":{

        "term":{

          "goodsname":"小米"

        }

      }

    }

    注意,第一行不能有大括号{

    *.在添加一条数据,进行测试,

    post ahd3/goods

    {

      "goodsname":"大米",

      "brand":"吊牌",

      "price":200,

      "image":"http://localhost:8080/a.jpg"

    }

    进行查询测试

    get ahd3/_search

    {

      "query":{

        "term":{

          "goodsname": "小米"

        }

      }

    }

    插入一条新的记录

    post ahd3/goods

    {

      "goodsname":"大米手机",

      "price":20000,

      "brand":"大米",

      "image":"http://baidu.com/a.jpg"

    }

    3.分词查询match测试

    get ahd3/_search

    {

      "query":{

        "match": {

          "brand":"米"

        }

      }

    }

    2.4    Range范围查询

    get ahd3/_search

    {

      "query":{

          "range":{

          "price":{

            "lte":1000,

            "gte":100

          }

            }

      }

    }

    新添加一条数据

    post ahd3/goods

    {

      "goodsname":"appla",

      "brand":"apple",

      "price":5000,

      "image":"http://www.baidu.com/sadf.jpg"

    }

    2.5    Fuzzy容错

    get ahd3/goods/_search

    {

      "query":{

        "fuzzy":{

          "goodsname":{

            "value": "apple",

            "fuzziness": 1

          }

        }

      }

    }

    2.6    Bool组合查询

    get ahd3/goods/_search

    {

      "query":{

        "bool": {

          "must":{

            "match":{

              "goodsname":"大米"

            }

           

          }

          }

      }

    }

    测试json书写是否正确

    get ahd3/goods/_search

    {

      "query":{

        "bool": {

          "must":[{

                    "match":{

              "goodsname":"大米"

            }

          },{

                    "term":{

              "brand":"大米"

            }

          }

          ]

          }

      }

    }

    显示字段的过滤

    只显示goodsname

    get ahd3/_search

    {

      "_source":{

        "includes":["goodsname"]

      }

    }

    排除goodsname

    get ahd3/_search

    {

      "_source":{

        "excludes":["goodsname"]

      }

    }

    3.2    、查询结果的过滤

    查询结果的过滤

    get ahd3/_search

    {

      "query":{

        "bool": {

          "must": {

              "term":{

                "goodsname":"小米"

              }

            },

            "filter":{

                "range": {

                  "price": {

                    "gte": 10,

                    "lte": 20000

                  }

                }

              }

         

        }

      }

    }

    分页:

    get ahd3/_search

    {

      "query":{

        "match_all": {

         

        }

      },

      "from":2,

      "size":2

    }

    排序倒序

    get ahd3/_search

    {

      "query":{

        "match_all": {

         

        }

      },

      "sort":{

        "price":"desc"

      }

    }

    高亮

    get ahd3/_search

    {

      "query":{

        "term": {

          "goodsname": {

            "value": "小米"

          }

        }

      },

      "highlight":{

        "pre_tags":"<a href='www.baidu.com'>",

        "post_tags":"</a>",

        "fields":{

          "goodsname":{}

        }

      }

    }

    聚合:

    get /ahd3/goods/_search

    {

       "size":0,

       "aggs":{

         "populor_color":{

           "terms": {

             "field": "price",

             "size": 10

           }

          

         }

       }

    }

    三.原始的api操作索引库(tcp:9300)

    2.1导入依赖

    <dependencies>
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>transport</artifactId>
            <version>6.2.4</version>
        </dependency>

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>

    <dependency>

                <groupId>com.alibaba</groupId>

                <artifactId>fastjson</artifactId>

                <version>1.2.35</version>

            </dependency>
    </dependencies>

    2.2原始api操作索引库

    TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)


    public class EsManager {

        private TransportClient client = null;

        @Before
        public void  init() throws Exception{
            client = new PreBuiltTransportClient(Settings.EMPTY)
                    .addTransportAddress(new TransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        }

        @After
        public void end(){
            client.close();
        }

    }

     

     

    第三步:各种查询

     

       @Test
        public void queryTest() throws Exception{
    //        QueryBuilder queryBuilder = QueryBuilders.matchAllQuery();

    //        QueryBuilder queryBuilder = QueryBuilders.matchQuery("goodsName","小米手机");

    //        QueryBuilder queryBuilder = QueryBuilders.termQuery("goodsName","小米");

    //        FuzzyQueryBuilder queryBuilder = QueryBuilders.fuzzyQuery("goodsName", "大米");
    //        queryBuilder.fuzziness(Fuzziness.ONE);

    //        QueryBuilder queryBuilder = QueryBuilders.rangeQuery("price").gte(1000).lte(2000);

            BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery();
            queryBuilder.must(QueryBuilders.rangeQuery("price").gte(1000).lte(8000));
            queryBuilder.mustNot(QueryBuilders.termQuery("goodsName", "华为"));

            SearchResponse searchResponse = client.prepareSearch("heima").setQuery(queryBuilder).get();

            SearchHits searchHits = searchResponse.getHits();
            long totalHits = searchHits.getTotalHits();
            System.out.println("总记录数:"+totalHits);
            SearchHit[] hits = searchHits.getHits();
            for (SearchHit hit : hits) {
                String sourceAsString = hit.getSourceAsString();
                Goods goods = JSON.parseObject(sourceAsString, Goods.class);
                System.out.println(goods);
            }
        }

     

    四.RestAPI操作索引库(http:9200)

    3.1 坐标

    <parent>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-starter-parent</artifactId>

            <version>2.1.3.RELEASE</version>

        </parent>

        <dependencies>

            <dependency>

                <groupId>org.springframework.boot</groupId>

                <artifactId>spring-boot-starter-test</artifactId>

            </dependency>

            <dependency>

                <groupId>org.springframework.boot</groupId>

                <artifactId>spring-boot-starter-logging</artifactId>

            </dependency>

            <dependency>

                <groupId>com.google.code.gson</groupId>

                <artifactId>gson</artifactId>

                <version>2.8.5</version>

            </dependency>

            <dependency>

                <groupId>org.apache.commons</groupId>

                <artifactId>commons-lang3</artifactId>

                <version>3.8.1</version>

            </dependency>

            <dependency>

                <groupId>org.elasticsearch.client</groupId>

                <artifactId>elasticsearch-rest-high-level-client</artifactId>

                <version>6.4.3</version>

            </dependency>

        </dependencies>

        <build>

            <plugins>

                <plugin>

                    <groupId>org.springframework.boot</groupId>

                    <artifactId>spring-boot-maven-plugin</artifactId>

                </plugin>

            </plugins>

        </build>

    3.2 RestAPI操作索引库

    1.初始化client 

    private   RestHighLevelClient client = null;
    private Gson gson = new Gson();
    @Before
    public void init(){
        client = new RestHighLevelClient(
                RestClient.builder(
                        new HttpHost("localhost", 9201, "http"),
                        new HttpHost("localhost", 9202, "http"),
                        new HttpHost("localhost", 9203, "http")));

    }

    2.准备pojo对象(使用lombok)

    @Data
    @AllArgsConstructor  //全参构造方法
    @NoArgsConstructor  //无参构造方法
    public class Item implements Serializable{
        private Long id;
        private String title; //标题
       
    private String category;// 分类
       
    private String brand; // 品牌
       
    private Double price; // 价格
       
    private String images; // 图片地址
    }

    //        新增或修改  IndexRequest
           
    Item item = new Item(1L,"大米6X手机","手机","小米",1199.0,"http.jpg");
            String jsonStr = gson.toJson(item);
            IndexRequest request = new IndexRequest("item","docs",item.getId().toString());
            request.source(jsonStr, XContentType.JSON);
            client.index(request, RequestOptions.DEFAULT);

    修改文档数据

    就是使用上面的新增方法,它既是新增也是修改

    根据id获取文档数据

    GetRequest request = new GetRequest("item","docs","1");
    GetResponse getResponse = client.get(request, RequestOptions.DEFAULT);
    String sourceAsString = getResponse.getSourceAsString();
    Item item = gson.fromJson(sourceAsString, Item.class);
    System.out.println(item);

    删除文档数据

    DeleteRequest deleteRequest = new DeleteRequest("item","docs","1");
      client.delete(deleteRequest,RequestOptions.DEFAULT);

    批量新增文档数据

    // 准备文档数据:
    List<Item> list = new ArrayList<>();
    list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00,"http://image.leyou.com/13123.jpg"));
    list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00,"http://image.leyou.com/13123.jpg"));
    list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00,"http://image.leyou.com/13123.jpg"));
    list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00,"http://image.leyou.com/13123.jpg"));
    list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00,"http://image.leyou.com/13123.jpg"));

    BulkRequest bulkRequest = new BulkRequest();
    for (Item item : list) {
        bulkRequest.add(new IndexRequest("item","docs",item.getId().toString()).source(JSON.toJSONString(item),XContentType.JSON)) ;
    }
    client.bulk(bulkRequest,RequestOptions.DEFAULT);

    各种查询

    @Test
    public void testQuery() throws Exception{
        SearchRequest searchRequest = new SearchRequest("item");
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

        searchSourceBuilder.query(QueryBuilders.matchAllQuery());
        searchSourceBuilder.query(QueryBuilders.termQuery("title","小米"));
        searchSourceBuilder.query(QueryBuilders.matchQuery("title","小米手机"));
        searchSourceBuilder.query(QueryBuilders.fuzzyQuery("title","大米").fuzziness(Fuzziness.ONE));
        searchSourceBuilder.query(QueryBuilders.rangeQuery("price").gte(3000).lte(4000));
        searchSourceBuilder.query(QueryBuilders.boolQuery().must(QueryBuilders.termQuery("title","手机"))
                                                            .must(QueryBuilders.rangeQuery("price").gte(3000).lte(3500)));
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        SearchHits searchHits = searchResponse.getHits();
        long total = searchHits.getTotalHits();
        System.out.println("总记录数:"+total);
        SearchHit[] hits = searchHits.getHits();
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            Item item = JSON.parseObject(sourceAsString, Item.class);
            System.out.println(item);
        }
    }

    过滤

    1、属性字段显示的过滤

    searchSourceBuilder.fetchSource(new String[]{"title","category"},null);
    searchSourceBuilder.query(QueryBuilders.matchAllQuery());

     

    2、查询结果的过滤

     

    searchSourceBuilder.query(QueryBuilders.termQuery("title","手机"));
    searchSourceBuilder.postFilter(QueryBuilders.termQuery("brand","小米"));

    分页

    searchSourceBuilder.query(QueryBuilders.matchAllQuery());
    searchSourceBuilder.from(0);  //起始位置
    searchSourceBuilder.size(3);  //每页显示条数

    排序

    searchSourceBuilder.sort("id", SortOrder.ASC);  // 参数1:排序的域名  参数2:顺序

    高亮

    构建高亮的条件

    searchSourceBuilder.query(QueryBuilders.termQuery("title","小米"));
    HighlightBuilder highlightBuilder = new HighlightBuilder();
    highlightBuilder.preTags("<font style='color:red'>");
    highlightBuilder.postTags("</font>");
    highlightBuilder.field("title");

    searchSourceBuilder.highlighter(highlightBuilder);

    解析高亮的结果

    for (SearchHit hit : hits) {

        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        HighlightField highlightField = highlightFields.get("title");
       String title = highlightField.getFragments()[0].toString();

       String sourceAsString = hit.getSourceAsString();
        Item item = JSON.parseObject(sourceAsString, Item.class);
        item.setTitle(title);
        System.out.println(item);
    }

    聚合

    需求:根据品牌统计数量

    构建的条件代码

    searchSourceBuilder.query(QueryBuilders.matchAllQuery());

    searchSourceBuilder.aggregation(AggregationBuilders.terms("brandAvg").field("brand"));

     

    解析结果:

    Aggregations aggregations = searchResponse.getAggregations();
    Terms terms = aggregations.get("brandAvg");
    List<? extends Terms.Bucket> buckets = terms.getBuckets();
    for (Terms.Bucket bucket : buckets) {
        System.out.println(bucket.getKeyAsString()+":"+bucket.getDocCount());
    }

    五.SpringDataElasticsearch操作索引库

    1.    准备环境

    1、添加依赖

    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
    </dependency>

    2、创建引导类

    @SpringBootApplication
    public class EsApplication {
        public static void main(String[] args) {
            SpringApplication.run(EsApplication.class,args);
        }
    }

    3、添加配置文件 application.yml

    spring:
      data:
        elasticsearch:
          cluster-name: leyou-elastic
          cluster-nodes: 127.0.0.1:9301,127.0.0.1:9302,127.0.0.1:9303

     

    4、创建一个测试类,注入SDE提供的一个模板

    @RunWith(SpringRunner.class)
    @SpringBootTest
    public class SpringDataEsManager {

        @Autowired
        private ElasticsearchTemplate elasticsearchTemplate;
    }

    Kibana:http

    原始的api:tcp

    RestAPI:http

    Sde: tcp

    2.    操作索引库和映射

    第一步:准备一个pojo,并且构建和索引的映射关系

    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    @Document(indexName="leyou",type = "goods",shards = 3,replicas = 1)
    public class Goods implements Serializable{
        @Field(type = FieldType.Long)
        private Long id;
        @Field(type = FieldType.Text,analyzer = "ik_max_word",store = true)
        private String title; //标题
       
    @Field(type = FieldType.Keyword,index = true,store = true)
        private String category;// 分类
       
    @Field(type = FieldType.Keyword,index = true,store = true)
        private String brand; // 品牌
       
    @Field(type = FieldType.Double,index = true,store = true)
        private Double price; // 价格
       
    @Field(type = FieldType.Keyword,index = false,store = true)
        private String images; // 图片地址
    }

    第二步:创建索引库和映射

      @Test
        public void addIndexAndMapping(){
    //        elasticsearchTemplate.createIndex(Goods.class); //根据pojo中的注解创建索引库

            elasticsearchTemplate.putMapping(Goods.class); //根据pojo中的注解创建映射
        }

    3.    操作文档

    //        新增或修改
    //        Goods goods = new Goods(1L,"大米6X手机","手机","小米",1199.0,"http.jpg");
    //        goodsRespository.save(goods); //save or update

    //        根据id查询
    //        Optional<Goods> optional = goodsRespository.findById(1L);
    //        Goods goods = optional.get();
    //        System.out.println(goods);

    //        删除
    //        goodsRespository.deleteById(1L);

    //        批量新增
           /* List<Goods> list = new ArrayList<>();
            list.add(new Goods(1L, "小米手机7", "手机", "小米", 3299.00,"http://image.leyou.com/13123.jpg"));
            list.add(new Goods(2L, "坚果手机R1", "手机", "锤子", 3699.00,"http://image.leyou.com/13123.jpg"));
            list.add(new Goods(3L, "华为META10", "手机", "华为", 4499.00,"http://image.leyou.com/13123.jpg"));
            list.add(new Goods(4L, "小米Mix2S", "手机", "小米", 4299.00,"http://image.leyou.com/13123.jpg"));
            list.add(new Goods(5L, "荣耀V10", "手机", "华为", 2799.00,"http://image.leyou.com/13123.jpg"));

            goodsRespository.saveAll(list);*/

    4.    查询

    4.1 goodsRespository自带的查询

    //        Iterable<Goods> goodsList = goodsRespository.findAll();  //查询所有
    //        Iterable<Goods> goodsList = goodsRespository.findAll(Sort.by(Sort.Direction.ASC,"price")); //排序
            Iterable<Goods> goodsList = goodsRespository.findAll(PageRequest.of(0,3));  //分页 page页码是从0开始代表第一页 size  5
            for (Goods goods : goodsList) {
                System.out.println(goods);
            }

    4.2 自定义查询方法

    可以在接口中根据规定定义一些方法就可以直接使用

    public interface GoodsRespository  extends ElasticsearchRepository<Goods,Long>{

        public List<Goods> findByTitle(String title);

        public List<Goods> findByBrand(String brand);

        public List<Goods> findByTitleOrBrand(String title,String brand);

        public List<Goods> findByPriceBetween(Double low,Double high);

        public List<Goods> findByBrandAndCategoryAndPriceBetween(String title,String categoty,Double low,Double high);

    }

    使用:

    //        List<Goods> goodsList = goodsRespository.findByTitle("手机");
           
    List<Goods> goodsList = goodsRespository.findByBrandAndCategoryAndPriceBetween("小米","手机",4000.0,5000.0);
            for (Goods goods : goodsList) {
                System.out.println(goods);
            }

    5.    SpringDataElasticSearch结合原生api查询

    1、结合native查询

    @Test
        public void testQuery(){

            NativeSearchQueryBuilder nativeSearchQueryBuilder = new NativeSearchQueryBuilder();
            nativeSearchQueryBuilder.withQuery(QueryBuilders.termQuery("title", "小米"));
    //        nativeSearchQueryBuilder.withQuery(QueryBuilders.matchAllQuery());
    //        nativeSearchQueryBuilder.withPageable(PageRequest.of(0,3,Sort.by(Sort.Direction.DESC,"price")));

           
    nativeSearchQueryBuilder.addAggregation(AggregationBuilders.terms("brandAvg").field("brand"));




    AggregatedPage<Goods> aggregatedPage = elasticsearchTemplate.queryForPage(nativeSearchQueryBuilder.build(), Goods.class,new GoodsHighLightResultMapper());

            Aggregations aggregations = aggregatedPage.getAggregations();
            Terms terms = aggregations.get("brandAvg");
            List<? extends Terms.Bucket> buckets = terms.getBuckets();
            for (Terms.Bucket bucket : buckets) {
                System.out.println(bucket.getKeyAsString()+bucket.getDocCount());
            }


            List<Goods> content = aggregatedPage.getContent();
            for (Goods goods : content) {
                System.out.println(goods);
            }


        }

    2、自己处理高亮

    需要自定一个用来处理高亮的实现类

    class GoodsHighLightResultMapper implements SearchResultMapper{
            @Override
            public <T> AggregatedPage<T> mapResults(SearchResponse searchResponse, Class<T> aClass, Pageable pageable) {
                List<T> content = new ArrayList<>();
                Aggregations aggregations = searchResponse.getAggregations();
                String scrollId = searchResponse.getScrollId();
                SearchHits searchHits = searchResponse.getHits();
                long total = searchHits.getTotalHits();
                float maxScore = searchHits.getMaxScore();
                for (SearchHit searchHit : searchHits) {
                    String sourceAsString = searchHit.getSourceAsString();
                    T t = JSON.parseObject(sourceAsString, aClass);

                    Map<String, HighlightField> highlightFields = searchHit.getHighlightFields();
                    HighlightField highlightField = highlightFields.get("title");
                    String title = highlightField.getFragments()[0].toString();
                    try {
                        BeanUtils.setProperty(t,"title",title);
                    } catch (Exception e) {
                        e.printStackTrace();
                    }

                    content.add(t);
                }


                return new AggregatedPageImpl<T>(content,pageable,total,aggregations,scrollId,maxScore);
    //            List<T> content, Pageable pageable, long total, Aggregations aggregations, String scrollId, float maxScore
           
    }
        }

    3、使用

     

  • 相关阅读:
    狗狗对主人的十句话
    微软提供正确卸载IE7的方法并恢复IE6
    c语言操作符的优先级
    linux 常用命令每日更新
    Visual Studio快捷键大全
    Opera将尽快发布补丁修复桌面浏览器漏洞 狼人:
    KILL杀毒软件重出江湖 公司股权全内资组成 狼人:
    图文:2010中国计算机网络安全年会华为展台 狼人:
    微软再次警告IE安全漏洞成为攻击目标 狼人:
    微软发布三月安全公告 两个补丁修补严重漏洞 狼人:
  • 原文地址:https://www.cnblogs.com/aihuadung/p/11593205.html
Copyright © 2011-2022 走看看