You are given a grid, consisting of $$$2$$$ rows and $$$n$$$ columns. Each cell of this grid should be colored either black or white.
Two cells are considered neighbours if they have a common border and share the same color. Two cells $$$A$$$ and $$$B$$$ belong to the same component if they are neighbours, or if there is a neighbour of $$$A$$$ that belongs to the same component with $$$B$$$.
Let's call some bicoloring beautiful if it has exactly $$$k$$$ components.
Count the number of beautiful bicolorings. The number can be big enough, so print the answer modulo $$$998244353$$$.
The only line contains two integers $$$n$$$ and $$$k$$$ ($$$1 le n le 1000$$$, $$$1 le k le 2n$$$) — the number of columns in a grid and the number of components required.
Print a single integer — the number of beautiful bicolorings modulo $$$998244353$$$.
3 4
12
4 1
2
1 2
2
One of possible bicolorings in sample $$$1$$$:
$$$(i,k,0)$$$ 的矩阵,可以由 $$$i-1$$$ 列的矩阵添加一列 $$$00$$$ 得到,当它的结尾为 $$$00$$$, $$$01$$$, $$$10$$$, $$$11$$$时,分别会让连通块个数:不变,不变,不变,+1,所以 $$$(i,k,0)$$$由 $$$(i-1,k,0)$$$, $$$(i-1,k,1)$$$, $$$(i-1,k,2)$$$, $$$(i-1,k-1,3)$$$得到: $$$$$$ egin{align} dp[i][k][0,0]=~~~& dp[i-1][k][0,0]\ +& dp[i-1][k][0,1]\ +& dp[i-1][k][1,0]\ +& dp[i-1][k-1][1,1] end{align} $$$$$$ $$$(i,k,1)$$$的矩阵同理,为$$$i-1$$$列的矩阵添加 $$$01$$$,当结尾为 $$$00$$$, $$$01$$$, $$$10$$$, $$$11$$$时,分别会使连通块的个数:+1,不变,+2,+1,所以$$$(i,k,1)$$$由$$$(i-1,k-1,0)$$$,$$$(i-1,k,1)$$$,$$$(i-1,k-2,2)$$$,$$$(i-1,k-1,3)$$$得到: $$$$$$ egin{align} dp[i][k][0,1]=~~~& dp[i-1][k-1][0,0]\ +& dp[i-1][k][0,1]\ +& dp[i-1][k-2][1,0]\ +& dp[i-1][k-1][1,1] end{align} $$$$$$ (i,k,2)同理可得: $$$$$$ egin{align} dp[i][k][1,0]=~~~& dp[i-1][k-1][0,0]\ +& dp[i-1][k-2][0,1]\ +& dp[i-1][k][1,0]\ +& dp[i-1][k-1][1,1] end{align} $$$$$$ (i,k,3)同理可得: $$$$$$ egin{align} dp[i][k][1,1]=~~~& dp[i-1][k-1][0,0]\ +& dp[i-1][k][0,1]\ +& dp[i-1][k][1,0]\ +& dp[i-1][k][1,1] end{align} $$$$$$ 于是得到了完整的递推公式,只需要从下面的状态开始, $$$$$$ egin{align} dp[1][1][0,0]=1\ dp[1][2][0,1]=1\ dp[1][2][1,0]=1\ dp[1][1][1,1]=1 end{align} $$$$$$ 就能推到出所有的状态,最后对dp[n][k]的所有情况求和就是答案了。
注意当k为1时,是不存在k-2的状态的,需要特判一下避免超出数组范围
#include<stdio.h> typedef long long LL; #define mod 998244353 int dp[1003][2006][4] = {0}; int main() { int n, lm; scanf("%d %d", &n, &lm); //初始化 dp[1][1][0] = 1;//00 dp[1][2][2] = 1;//10 dp[1][2][1] = 1;//01 dp[1][1][3] = 1;//11 LL temp=0; for (int i = 2; i <= n; ++i) { for (int k = 1; k <= (i << 1); ++k) { temp = 0;//使用temp求和来避免溢出 temp =temp + dp[i - 1][k][1]//01 + dp[i - 1][k][0]//00 + dp[i - 1][k][2]//10 + dp[i - 1][k - 1][3];//11 dp[i][k][0] = temp % mod; temp = 0; temp = temp + dp[i - 1][k][1]//01 + dp[i - 1][k-1][0]//00 + (k>=2?dp[i - 1][k - 2][2]:0)//10 + dp[i - 1][k-1][3];//11 dp[i][k][1] = temp%mod; temp = 0; temp = temp + (k>=2?dp[i - 1][k - 2][1]:0)//01 + dp[i - 1][k-1][0]//00 + dp[i - 1][k][2]//10 + dp[i - 1][k-1][3];//11 dp[i][k][2] = temp%mod; temp = 0; temp = temp + dp[i - 1][k][1]//01 + dp[i - 1][k - 1][0]//00 + dp[i - 1][k][2]//10 + dp[i - 1][k][3];//11 dp[i][k][3] = temp%mod; temp = 0; } } LL ans = 0; ans = ans + dp[n][lm][0] + dp[n][lm][1] + dp[n][lm][2] + dp[n][lm][3]; ans = ans%mod; printf("%I64d ", ans); }