zoukankan      html  css  js  c++  java
  • COCO数据集格式互换

    poly->compacted RLE:

        seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
        compactedRLE = maskutil.frPyObjects([seg], 768, 768)
        print(compactedRLE)

    compacted(compressed) RLE->mask:

        mask = maskutil.decode(compactedRLE)
        mask=np.reshape(mask,(768,768))
        mask[:,:]=mask[:,:]*255
        print(mask)
        #mmcv.imshow(mask)

    mask-> polygon / RLE:

    def close_contour(contour):
        if not np.array_equal(contour[0], contour[-1]):
            contour = np.vstack((contour, contour[0]))
        return contour

    def binary_mask_to_polygon(binary_mask, tolerance=0):
        """Converts a binary mask to COCO polygon representation
        Args:
        binary_mask: a 2D binary numpy array where '1's represent the object
        tolerance: Maximum distance from original points of polygon to approximated
        polygonal chain. If tolerance is 0, the original coordinate array is returned.
        """
        

        polygons = []
        # pad mask to close contours of shapes which start and end at an edge
        padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
        contours = measure.find_contours(padded_binary_mask, 0.5)
        contours = np.subtract(contours, 1)
        for contour in contours:
            contour = close_contour(contour)
            contour = measure.approximate_polygon(contour, tolerance)
            if len(contour) < 3:
                continue
            contour = np.flip(contour, axis=1)
            segmentation = contour.ravel().tolist()
            # after padding and subtracting 1 we may get -0.5 points in our segmentation
            segmentation = [0 if i < 0 else i for i in segmentation]
            polygons.append(segmentation)

        return polygons

    def binary_mask_to_rle(binary_mask):
        rle = {'counts': [], 'size': list(binary_mask.shape)}
        counts = rle.get('counts')
        for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
            if i == 0 and value == 1:
                counts.append(0)
            counts.append(len(list(elements)))
        return rle

     

    def main():

        mask=np.array(
            [
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 1, 1, 0, 0, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1, 1, 1, 0],
                [0, 0, 1, 0, 0, 0, 1, 0],
                [0, 0, 1, 0, 0, 0, 1, 0],
                [0, 0, 0, 0, 0, 0, 0, 0]
            ]
        )
        print(mask)

        poly=binary_mask_to_polygon(mask)

        print(poly)

        rle=binary_mask_to_rle(mask)

        print(rle)

  • 相关阅读:
    数据攻略●R语言自述
    测试实例
    xml反射
    过滤器
    使用s标签来进行简单的表格配置
    将Spring、Hibernate、Struts2连接起来
    Spring容器
    初见Spring框架
    Spring框架的AOP
    Hibernate里面的几个方法
  • 原文地址:https://www.cnblogs.com/aimhabo/p/9935815.html
Copyright © 2011-2022 走看看