zoukankan      html  css  js  c++  java
  • tensor flow

    白话深度学习与TensorFlow  

     https://item.jd.com/12228460.html

    第1章 机器学习是什么  2
    1.1 聚类  4
    1.2 回归  5
    1.3 分类  8
    1.4 综合应用  10
    1.5 小结  14
    第2章 深度学习是什么 15
    2.1 神经网络是什么  15
    2.1.1 神经元  16
    2.1.2 激励函数  19
    2.1.3 神经网络  24
    2.2 深度神经网络  25
    2.3 深度学习为什么这么强  28
    2.3.1 不用再提取特征  28
    2.3.2 处理线性不可分  29
    2.4 深度学习应用  30
    2.4.1 围棋机器人——AlphaGo  30
    2.4.2 被教坏的少女——Tai.ai  32
    2.4.3 本田公司的大宝贝——
    ASIMO  33
    2.5 小结  37
    第3章 TensorFlow框架特性与安装 38
    3.1 简介  38
    3.2 与其他框架的对比  39
    3.3 其他特点  40
    3.4 如何选择好的框架  44
    3.5 安装TensorFlow  45
    3.6 小结  46
    原理与实践篇
    第4章 前馈神经网络  50
    4.1 网络结构  50
    4.2 线性回归的训练  51
    4.3 神经网络的训练  75
    4.4 小结  79
    第5章 手写板功能  81
    5.1 MNIST介绍  81
    5.2 使用TensorFlow完成实验  86
    5.3 神经网络为什么那么强  92
    5.3.1 处理线性不可分  93
    5.3.2 挑战“与或非”  95
    5.3.3 丰富的VC——强大的空间
    划分能力  98
    5.4 验证集、测试集与防止过拟合  99
    5.5 小结  102
    第6章 卷积神经网络  103
    6.1 与全连接网络的对比  103
    6.2 卷积是什么  104
    6.3 卷积核  106
    6.4 卷积层其他参数  108
    6.5 池化层  109
    6.6 典型CNN网络  110
    6.7 图片识别  114
    6.8 输出层激励函数——SOFTMAX  116
    6.8.1 SOFTMAX  116
    6.8.2 交叉熵  117
    6.9 小试牛刀——卷积网络做图片分类  124
    6.10 小结  138
    第7章 综合问题  139
    7.1 并行计算  139
    7.2 随机梯度下降  142
    7.3 梯度消失问题  144
    7.4 归一化  147
    7.5 参数初始化问题  149
    7.6 正则化  151
    7.7 其他超参数  155
    7.8 不唯一的模型  156
    7.9 DropOut  157
    7.10 小结  158
    第8章 循环神经网络  159
    8.1 隐马尔可夫模型  159
    8.2 RNN和BPTT算法  163
    8.2.1 结构  163
    8.2.2 训练过程  163
    8.2.3 艰难的误差传递  165
    8.3 LSTM算法  167
    8.4 应用场景  171
    8.5 实践案例——自动文本生成  174
    8.5.1 RNN工程代码解读  174
    8.5.2 利用RNN学习莎士比亚剧本  183
    8.5.3 利用RNN学习维基百科  184
    8.6 实践案例——聊天机器人  185
    8.7 小结  196
    扩 展 篇

  • 相关阅读:
    NEON中的L可以避免溢出
    编译Qualcomm的Hexagon exampls错误
    C语言中的static
    在非NDK编译条件下使用Android Log函数
    NEON的vsub方法溢出
    OpenCL中读取image时的坐标
    Ubuntu16.0 GTX1660Ti 安装NVIDIA CUDA cuDNN Tensflow
    修改so库中的依赖名
    Qt数据库总结
    Qt插件系统
  • 原文地址:https://www.cnblogs.com/morganh/p/8251708.html
Copyright © 2011-2022 走看看