zoukankan      html  css  js  c++  java
  • poj 3250 状态压缩dp入门

    Corn Fields
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 7798   Accepted: 4159

    Description

    Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

    Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

    Input

    Line 1: Two space-separated integers: M and N 
    Lines 2..M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

    Output

    Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

    Sample Input

    2 3
    1 1 1
    0 1 0

    Sample Output

    9
    
     1 #include<iostream>
     2 #include<string>
     3 #include<cstdio>
     4 #include<vector>
     5 #include<queue>
     6 #include<stack>
     7 #include<set>
     8 #include<algorithm>
     9 #include<cstring>
    10 #include<stdlib.h>
    11 #include<math.h>
    12 #include<map>
    13 using namespace std;
    14 #define pb push_back
    15 #define ll long long
    16 #define mod 100000000
    17 int dp[20][1<<13],p[20][20];
    18 int can(int x){//   相邻两位是否相同
    19     if(x&(x<<1)) return 0;
    20     else return 1;
    21 }
    22 int main(){
    23     int n,m;
    24     while(cin>>n>>m){
    25         int mmax=(1<<m)-1;
    26         for(int i=1;i<=n;i++)
    27             for(int j=1;j<=m;j++)
    28             cin>>p[i][j];
    29         memset(dp,0,sizeof(dp));
    30         dp[0][0]=1;
    31         for(int i=1;i<=n;i++){
    32             int tmp=0;
    33             for(int j=1;j<=m;j++)
    34             if(!p[i][j]) tmp+=(1<<(j-1));//tmp存的是不能放牛的最大状态的值
    35             for(int j=0;j<=mmax;j++){
    36                 if(j&tmp) continue;//因为j的某些位与tmp中一些位置相同,但是tmp中的是不能放牛的,所以排除
    37                 if(!can(j)) continue; //有相邻的位置放牛,所以排除
    38                 for(int k=0;k<=mmax;k++)
    39                 if(dp[i-1][k]&&!(j&k))//排除与上一行相邻的
    40                 dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
    41             }
    42         }
    43         ll ans=0;
    44         for(int i=0;i<=mmax;i++) ans=(ans+dp[n][i])%mod;
    45         cout<<ans<<endl;
    46     }
    47 }
    
    
  • 相关阅读:
    PHP面向对象编程入门
    PHP错误处理机制
    PHP数组深入
    PHP 表单
    多重背包之单调队列优化理论性总结
    二分查找理论性总结
    大连海事大学第十届程序设计竞赛 题解
    Codeforces Round #603 (Div. 2) E. Editor (线段树维护前缀和最值)
    Educational Codeforces Round 77 (Rated for Div. 2) E. Tournament (DP)
    Leetcode1256 加密数字(手动找规律)
  • 原文地址:https://www.cnblogs.com/ainixu1314/p/3938215.html
Copyright © 2011-2022 走看看