zoukankan      html  css  js  c++  java
  • poj 3250 状态压缩dp入门

    Corn Fields
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 7798   Accepted: 4159

    Description

    Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

    Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

    Input

    Line 1: Two space-separated integers: M and N 
    Lines 2..M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

    Output

    Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

    Sample Input

    2 3
    1 1 1
    0 1 0

    Sample Output

    9
    
     1 #include<iostream>
     2 #include<string>
     3 #include<cstdio>
     4 #include<vector>
     5 #include<queue>
     6 #include<stack>
     7 #include<set>
     8 #include<algorithm>
     9 #include<cstring>
    10 #include<stdlib.h>
    11 #include<math.h>
    12 #include<map>
    13 using namespace std;
    14 #define pb push_back
    15 #define ll long long
    16 #define mod 100000000
    17 int dp[20][1<<13],p[20][20];
    18 int can(int x){//   相邻两位是否相同
    19     if(x&(x<<1)) return 0;
    20     else return 1;
    21 }
    22 int main(){
    23     int n,m;
    24     while(cin>>n>>m){
    25         int mmax=(1<<m)-1;
    26         for(int i=1;i<=n;i++)
    27             for(int j=1;j<=m;j++)
    28             cin>>p[i][j];
    29         memset(dp,0,sizeof(dp));
    30         dp[0][0]=1;
    31         for(int i=1;i<=n;i++){
    32             int tmp=0;
    33             for(int j=1;j<=m;j++)
    34             if(!p[i][j]) tmp+=(1<<(j-1));//tmp存的是不能放牛的最大状态的值
    35             for(int j=0;j<=mmax;j++){
    36                 if(j&tmp) continue;//因为j的某些位与tmp中一些位置相同,但是tmp中的是不能放牛的,所以排除
    37                 if(!can(j)) continue; //有相邻的位置放牛,所以排除
    38                 for(int k=0;k<=mmax;k++)
    39                 if(dp[i-1][k]&&!(j&k))//排除与上一行相邻的
    40                 dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
    41             }
    42         }
    43         ll ans=0;
    44         for(int i=0;i<=mmax;i++) ans=(ans+dp[n][i])%mod;
    45         cout<<ans<<endl;
    46     }
    47 }
    
    
  • 相关阅读:
    程序基址,X64Dbg软件常用调试技巧查找系统函数调用位置执行到指定位置断点
    #pragma的常用方法讲解,为什么有了条件编译符号“DEBUG”还要来个Debugger.IsAttached
    JDK17Src0.java.base
    nmon的安装和使用
    64位下的相对指令地址X86指令格式(操作码列和指令列解释)
    内存中的程序剖析
    Linux I/O 原理和 Zerocopy 技术全面揭秘
    Ubuntu命令行的垃圾箱,回收站
    SecureCRT密钥链接阿里云
    HTTP API 认证授权术
  • 原文地址:https://www.cnblogs.com/ainixu1314/p/3938215.html
Copyright © 2011-2022 走看看