package com.imooc.hadoop.mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * 使用MapReduce开发WordCount应用程序 */ public class CombinerApp { /** * Map:读取输入的文件 */ public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>{ LongWritable one = new LongWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 接收到的每一行数据 String line = value.toString(); //按照指定分隔符进行拆分 String[] words = line.split(" "); for(String word : words) { // 通过上下文把map的处理结果输出 context.write(new Text(word), one); } } } /** * Reduce:归并操作 */ public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { long sum = 0; for(LongWritable value : values) { // 求key出现的次数总和 sum += value.get(); } // 最终统计结果的输出 context.write(key, new LongWritable(sum)); } } /** * 定义Driver:封装了MapReduce作业的所有信息 */ public static void main(String[] args) throws Exception{ //创建Configuration Configuration configuration = new Configuration(); // 准备清理已存在的输出目录 Path outputPath = new Path(args[1]); FileSystem fileSystem = FileSystem.get(configuration); if(fileSystem.exists(outputPath)){ fileSystem.delete(outputPath, true); System.out.println("output file exists, but is has deleted"); } //创建Job Job job = Job.getInstance(configuration, "wordcount"); //设置job的处理类 job.setJarByClass(CombinerApp.class); //设置作业处理的输入路径 FileInputFormat.setInputPaths(job, new Path(args[0])); //设置map相关参数 job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); //设置reduce相关参数 job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); //通过job设置combiner处理类,其实逻辑上和我们的reduce是一模一样的 job.setCombinerClass(MyReducer.class); //设置作业处理的输出路径 FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
增加了Combiner,为了使程序运行的速度更快。
Combiner运行机制