为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例。图7-7-12的左图是一个简单的3个顶点的连通网图。
我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵。P代表对应顶点的最短路径的前驱矩阵。在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵。将P命名为P(-1), 初始化为图中的矩阵。
首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径。因为只有3个顶点,因此需要查看v1->v0->v2,得到
D(-1)[1][0] + D(-1)[0][2] = 3。D(-1)[1][2]表示的是v1->v2的权值为5,我们发现D(-1)[1][2] > D(-1)[1][0] + D(-1)[0][2] ,通俗话来说就是
v1->v0->v2 比v1->v2距离还要近。所以我们就让 D(-1)[1][2] = D(-1)[1][0] + D(-1)[0][2] = 3, 同样地D(-1)[2][1] = 3, 于是就有了D(0)矩阵。因为有变化,所以P矩阵对应的P(-1)[1][2]和P(-1)[2][1]也修改为当前中转的顶点v0的下标0, 于是就有了P(0)。也就是说
接下来,也就是在D(0)和P(0)的基础上继续处理所有顶点经过v1和v2后到达另一顶点的最短路径,得到D(1)和P(1)、D(2)和P(2)完成所有顶点到所有顶点的最短路径计算工作。
首先我们针对图7-7-13的左网图准备两个矩阵D(-1)和P(-1),D(-1)就是网图的邻接矩阵,P(-1)初设为P[i][j]=j 这样的矩阵。主要用来存储路径。
代码如下(改编自《大话数据结构》):注意因为是要求所有顶点到所有顶点的最短路径,因为使用二维数组。
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
#include<iostream>
using namespace std; #define MAXEDGE 20 #define MAXVEX 20 #define INFINITY 65535 typedef struct { int vexs[MAXVEX]; int arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; } MGraph; typedef int Patharc[MAXVEX][MAXVEX]; typedef int ShortPathTable[MAXVEX][MAXVEX]; /* 构建图 */ void CreateMGraph(MGraph *G) { int i, j; /* printf("请输入边数和顶点数:"); */ G->numEdges = 16; G->numVertexes = 9; for (i = 0; i < G->numVertexes; i++)/* 初始化图 */ { G->vexs[i] = i; } for (i = 0; i < G->numVertexes; i++)/* 初始化图 */ { for ( j = 0; j < G->numVertexes; j++) { if (i == j) G->arc[i][j] = 0; else G->arc[i][j] = G->arc[j][i] = INFINITY; } } G->arc[0][1] = 1; G->arc[0][2] = 5; G->arc[1][2] = 3; G->arc[1][3] = 7; G->arc[1][4] = 5; G->arc[2][4] = 1; G->arc[2][5] = 7; G->arc[3][4] = 2; G->arc[3][6] = 3; G->arc[4][5] = 3; G->arc[4][6] = 6; G->arc[4][7] = 9; G->arc[5][7] = 5; G->arc[6][7] = 2; G->arc[6][8] = 7; G->arc[7][8] = 4; for(i = 0; i < G->numVertexes; i++) { for(j = i; j < G->numVertexes; j++) { G->arc[j][i] = G->arc[i][j]; } } } /* Floyd算法,求网图G中各顶点v到其余顶点w的最短路径P[v][w]及带权长度D[v][w]。 */ void ShortestPath_Floyd(MGraph MG, Patharc P, ShortPathTable D) { int v, w, k; for (v = 0; v < MG.numVertexes; v++)/* 初始化D与P */ { for (w = 0; w < MG.numVertexes; w++) { D[v][w] = MG.arc[v][w];/* D[v][w]值即为对应点间的权值 */ P[v][w] = w;/* 初始化P */ } } for (k = 0; k < MG.numVertexes; k++) { for (v = 0; v < MG.numVertexes; v++) { for (w = 0; w < MG.numVertexes; w++) { /* 如果经过下标为k顶点路径比原两点间路径更短 */ if (D[v][w] > D[v][k] + D[k][w]) { /* 将当前两点间权值设为更小的一个 */ D[v][w] = D[v][k] + D[k][w]; P[v][w] = P[v][k];/* 路径设置为经过下标为k的顶点 */ } } } } } int main(void) { int v, w, k; MGraph MG; Patharc P; ShortPathTable D; CreateMGraph(&MG); ShortestPath_Floyd(MG, P, D); cout << "各顶点间最短路径如下: " << endl; for (v = 0; v < MG.numVertexes; v++) { for (w = v + 1; w < MG.numVertexes; w++) { cout << "v" << v << "--" << "v" << w << " weight: " << D[v][w] << " Path: " << v << ' '; k = P[v][w]; while (k != w) { cout << "-> " << k << " "; k = P[k][w]; } cout << "-> " << w << endl; } cout << endl; } return 0; } |
程序中的算法代码非常简洁,即用了一个三层循环,k代表的是中转结点的下标,v代表起始结点,w代表结束终点。k = 0 ~ 8,表示针对每个顶点作为中转结点得到的计算结果,最终当k = 8时,两矩阵数据如图7-7-16所示。
从上图我们可以看到第v2行的数值与Dijkstra算法求得的D数组的数值完全一样,都是{4, 3, 0, 3, 1, 4, 6, 8, 12 }, 而且这里是所有顶点到所有顶点的最短路径权值和都可以计算得出。那么如何由P这个路径数组得出具体的最短路径呢?以v2到v8为例,P[2][8] = 4,说明要经过顶点v4, 将4替换2,P[4][8] = 3, 说明经过v3, ......., 最终推导出最短路径为:v2->v4->v3->v6->v7->v8。
Floyd算法使用了三层循环,故时间复杂度也为O(n^3),与Dijkstra算法一致,不过Floyd算法代码简洁,虽简洁但也不一定好懂,还是需要多加揣摩才能领会。另外,虽然我们使用的例子都是无向图的,但它们对于有向图依然有效,只不过在创建图的时候,有向图的邻接矩阵不是对称的而已。