zoukankan      html  css  js  c++  java
  • 【Hadoop】Hadoop 2.7.6安装_伪分布式集群

    本篇主要演示在Linux上安装单节点Hadoop模式,以及伪分布式Hadoop模式。

    一 安装环境

    • 操作系统:Oracle Linux Server release 6.5;
    • Java版本:java-1.7.0-openjdk-1.7.0.45;
    • Hadoop版本:hadoop-2.7.6;
    二 安装前准备

    1 创建hadoop用户
    [root@strong ~]# useradd hadoop
    [root@strong ~]# usermod -a -G root hadoop
    [root@strong ~]# passwd hadoop
    Changing password for user hadoop.
    New password: 
    Retype new password: 
    passwd: all authentication tokens updated successfully.
    2 安装SSH,配置SSH免密码登录

    1)检查是否安装SSH,若没,则安装;
    [hadoop@strong ~]$ rpm -qa|grep ssh
    openssh-server-5.3p1-94.el6.x86_64
    openssh-5.3p1-94.el6.x86_64
    libssh2-1.4.2-1.el6.x86_64
    ksshaskpass-0.5.1-4.1.el6.x86_64
    openssh-askpass-5.3p1-94.el6.x86_64
    openssh-clients-5.3p1-94.el6.x86_64
    2)配置SSH免密码登录
    [hadoop@strong ~]$ cd .ssh/
    [hadoop@strong .ssh]$ ssh-keygen -t rsa
    Generating public/private rsa key pair.
    Enter file in which to save the key (/home/hadoop/.ssh/id_rsa): 
    Enter passphrase (empty for no passphrase): 
    Enter same passphrase again: 
    Your identification has been saved in /home/hadoop/.ssh/id_rsa.
    Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.
    The key fingerprint is:
    13:df:06:f2:ea:21:31:b2:c1:f8:13:24:c6:bf:45:05 hadoop@strong.hadoop.com
    The key's randomart image is:
    +--[ RSA 2048]----+
    |      E..        |
    | .     .         |
    |  + . . o .      |
    | . * .   = o     |
    |  . * + S o o    |
    |   . B o o .     |
    |    = . o        |
    |     . o .       |
    |        .        |
    +-----------------+
    [hadoop@strong .ssh]$ cat id_rsa.pub >> authorized_keys
    [hadoop@strong .ssh]$ chmod 600 authorized_keys 
    [hadoop@strong .ssh]$ ssh localhost
    Last login: Fri Jun  8 19:55:11 2018 from localhost
    3 安装JAVA

    [root@strong ~]# yum install java-1.7.0-openjdk*
    在.bash_profile中添加以下内容:
    [hadoop@strong ~]$ vim .bash_profile
    export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.45.x86_64
    [hadoop@strong ~]$ . .bash_profile 
    验证JDK配置是否正确:
    [hadoop@strong ~]$ java -version
    java version "1.7.0_45"
    OpenJDK Runtime Environment (rhel-2.4.3.3.0.1.el6-x86_64 u45-b15)
    OpenJDK 64-Bit Server VM (build 24.45-b08, mixed mode)
    [hadoop@strong ~]$ /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.45.x86_64/bin/java -version
    java version "1.7.0_45"
    OpenJDK Runtime Environment (rhel-2.4.3.3.0.1.el6-x86_64 u45-b15)
    OpenJDK 64-Bit Server VM (build 24.45-b08, mixed mode)
    注:Oracle Linux 6.5默认安装的是Java JRE,而不是JDK,为开发方便,则需安装JDK。

    三 安装配置Hadoop

    1 下载Hadoop软件

    [root@strong local]# ll hadoop-2.7.6.tar.gz 
    -rw-r--r--. 1 root root 216745683 Jun  8 20:20 hadoop-2.7.6.tar.gz
    2 解压缩
    [root@strong local]# tar zxvf hadoop-2.7.6.tar.gz
    [root@strong local]# chown -R hadoop:hadoop hadoop-2.7.6
    3 检查Hadoop是否可用,成功则显示版本信息
    [root@strong local]# su - hadoop
    [hadoop@strong ~]$ cd /usr/local/hadoop-2.7.6
    [hadoop@strong hadoop-2.7.6]$ ./bin/hadoop version
    Hadoop 2.7.6
    Subversion https://shv@git-wip-us.apache.org/repos/asf/hadoop.git -r 085099c66cf28be31604560c376fa282e69282b8
    Compiled by kshvachk on 2018-04-18T01:33Z
    Compiled with protoc 2.5.0
    From source with checksum 71e2695531cb3360ab74598755d036
    This command was run using /usr/local/hadoop-2.7.6/share/hadoop/common/hadoop-common-2.7.6.jar
    4 设置JAVA_HOME变量

    在以下文件修改JAVA_HOME
    [hadoop@strong hadoop-2.7.6]$ vim etc/hadoop/hadoop-env.sh
    export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.45.x86_64
    5 单机配置(非分布式)

    Hadoop默认模式是非分布式模式,无须进行其他配置即可运行,非分布式即Java进程,方便进行调试。

    1)运行wordcount示例

    经过上面四步的设置,已经完成了单机配置,现在演示单机配置下的示例,来体验下Hadoop的功能:
    [hadoop@strong hadoop-2.7.6]$ mkdir input
    [hadoop@strong hadoop-2.7.6]$ vim ./input/test.txt
    [hadoop@strong hadoop-2.7.6]$ cat ./input/test.txt 
    Hello this is my first time to learn hadoop 
    love hadoop 
    Hello hadoop
    [hadoop@strong hadoop-2.7.6]$ ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar wordcount input output
    18/06/08 20:38:44 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
    18/06/08 20:38:44 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
    18/06/08 20:38:44 INFO input.FileInputFormat: Total input paths to process : 1
    18/06/08 20:38:44 INFO mapreduce.JobSubmitter: number of splits:1
    18/06/08 20:38:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local241325947_0001
    18/06/08 20:38:47 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
    18/06/08 20:38:47 INFO mapreduce.Job: Running job: job_local241325947_0001
    18/06/08 20:38:47 INFO mapred.LocalJobRunner: OutputCommitter set in config null
    18/06/08 20:38:47 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
    18/06/08 20:38:47 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
    18/06/08 20:38:48 INFO mapred.LocalJobRunner: Waiting for map tasks
    18/06/08 20:38:48 INFO mapred.LocalJobRunner: Starting task: attempt_local241325947_0001_m_000000_0
    18/06/08 20:38:48 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
    ----------------中间过程省略------------------
    Shuffle Errors
    		BAD_ID=0
    		CONNECTION=0
    		IO_ERROR=0
    		WRONG_LENGTH=0
    		WRONG_MAP=0
    		WRONG_REDUCE=0
    	File Input Format Counters 
    		Bytes Read=71
    	File Output Format Counters 
    		Bytes Written=81
    2)查看运行结果
    [hadoop@strong hadoop-2.7.6]$ cat output/*
    Hello	2
    first	1
    hadoop	3
    is	1
    learn	1
    love	1
    my	1
    this	1
    time	1
    to	1
    注:Hadoop默认不会覆盖结果文件,再次运行会出错,提示文件存在,需先将output删除。

    四 Hadoop伪分布式配置

    Hadoop可以在单节点以伪分布式模式运行,Hadoop进程以分离的Java进程运行,节点即作为NameNode,也作为DataNode,同时,读取的是HDFS文件。

    Hadoop的配置文件位于 /usr/local/hadoop-2.7.6/etc/hadoop/中,伪分布式需要修改两个配置文件,分别为core-site.xml和hdfs-site.xml,配置文件xml格式,每个配置以property的name和value设置。

    1 修改core-site.xml
    <configuration>
            <property>
                    <name>fs.defaultFS</name>
                    <value>hdfs://localhost:9000</value>
            </property>
    </configuration>
    2 修改hdfs-site.xml
    <configuration>
            <property>
                    <name>dfs.replication</name>
                    <value>1</value>
            </property>
    </configuration>
    3 执行NameNode格式化
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs namenode -format
    18/06/08 20:57:45 INFO namenode.NameNode: STARTUP_MSG: 
    /************************************************************
    STARTUP_MSG: Starting NameNode
    STARTUP_MSG:   host = strong.hadoop.com/192.168.56.102
    STARTUP_MSG:   args = [-format]
    STARTUP_MSG:   version = 2.7.6
    --------------------中间过程省略------------------------
    18/06/08 20:57:52 INFO util.GSet: Computing capacity for map NameNodeRetryCache
    18/06/08 20:57:52 INFO util.GSet: VM type       = 64-bit
    18/06/08 20:57:52 INFO util.GSet: 0.029999999329447746% max memory 966.7 MB = 297.0 KB
    18/06/08 20:57:52 INFO util.GSet: capacity      = 2^15 = 32768 entries
    18/06/08 20:57:52 INFO namenode.FSImage: Allocated new BlockPoolId: BP-1934541033-192.168.56.102-1528462672607
    18/06/08 20:57:52 INFO common.Storage: Storage directory /tmp/hadoop-hadoop/dfs/name has been successfully formatted.------------表示格式化成功
    18/06/08 20:57:53 INFO namenode.FSImageFormatProtobuf: Saving image file /tmp/hadoop-hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression
    18/06/08 20:57:53 INFO namenode.FSImageFormatProtobuf: Image file /tmp/hadoop-hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 323 bytes saved in 0 seconds.
    18/06/08 20:57:53 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
    18/06/08 20:57:53 INFO util.ExitUtil: Exiting with status 0  ------------表示格式化成功
    18/06/08 20:57:53 INFO namenode.NameNode: SHUTDOWN_MSG: 
    /************************************************************
    SHUTDOWN_MSG: Shutting down NameNode at strong.hadoop.com/192.168.56.102
    ************************************************************/
    4 启动NameNode和DataNode进程
    [hadoop@strong hadoop-2.7.6]$ sbin/start-dfs.sh 
    Starting namenodes on [localhost]
    localhost: starting namenode, logging to /usr/local/hadoop-2.7.6/logs/hadoop-hadoop-namenode-strong.hadoop.com.out
    localhost: starting datanode, logging to /usr/local/hadoop-2.7.6/logs/hadoop-hadoop-datanode-strong.hadoop.com.out
    Starting secondary namenodes [0.0.0.0]
    The authenticity of host '0.0.0.0 (0.0.0.0)' can't be established.
    RSA key fingerprint is 68:da:7d:9f:e5:46:14:fc:30:15:9e:24:3d:6e:a9:1d.
    Are you sure you want to continue connecting (yes/no)? yes
    0.0.0.0: Warning: Permanently added '0.0.0.0' (RSA) to the list of known hosts.
    0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop-2.7.6/logs/hadoop-hadoop-secondarynamenode-strong.hadoop.com.out
    启动成功后,查看:
    [hadoop@strong hadoop-2.7.6]$ jps
    4034 DataNode
    4346 Jps
    3939 NameNode
    4230 SecondaryNameNode
    5 NameNode节点通过Web访问


    6 运行伪分布式实例

    在上面的本地模式,wordcount读取的是本地实例,伪分布式读取的这是HDFS上的数据,要使用HDFS,首先需要在HDFS中创建用户目录。

    1)创建用户目录
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -mkdir -p /user/hadoop
    2)拷贝input文件至分布式文件系统

    将上面创建的文件etc/test.txt复制到分布式文件系统的/user/hadoop/input中,我们使用的是Hadoop用户,并且已创建相应的用户目录/user/hadoop,因此在命令中可以使用相对路径,其对应的绝对路径为/user/hadoop/input。
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -put input/test.txt input
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -ls
    Found 1 items
    -rw-r--r--   1 hadoop supergroup         71 2018-06-08 21:21 input
    3) 运行wordcount示例
    [hadoop@strong hadoop-2.7.6]$ ./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar wordcount input output
    4)查看运行结果
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -ls output
    Found 2 items
    -rw-r--r--   1 hadoop supergroup          0 2018-06-08 21:24 output/_SUCCESS
    -rw-r--r--   1 hadoop supergroup         69 2018-06-08 21:24 output/part-r-00000
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -cat output/*
    Hello	2
    first	1
    hadoop	3
    is	1
    learn	1
    love	1
    my	1
    this	1
    time	1
    to	1
    5)Hadoop运行时,输出目录不能存在,否则会出错,删除output
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -ls output
    Found 2 items
    -rw-r--r--   1 hadoop supergroup          0 2018-06-08 21:24 output/_SUCCESS
    -rw-r--r--   1 hadoop supergroup         69 2018-06-08 21:24 output/part-r-00000
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -rm -r output
    18/06/08 21:43:01 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 0 minutes, Emptier interval = 0 minutes.
    Deleted output
    五 启动YARN

    YARN是从MapReduce分离出来的,负责资源管理与任务调度,YARN运行位于MapReduce之上,提供了高可用性、高扩展性。

    1配置mapred-site.xml
    <configuration>
            <property>
                    <name>mapreduce.framework.name</name>
                    <value>yarn</value>
            </property>
    </configuration>
    2 配置yarn-site.xml
    <configuration>
            <property>
                    <name>yarn.nodemanager.aux-services</name>
                    <value>mapreduce_shuffle</value>
            </property>
    </configuration>
    3 启动ResourceManager进程和NodeManager进程

    1)启动YARN
    [hadoop@strong hadoop-2.7.6]$ sbin/start-yarn.sh 
    starting yarn daemons
    starting resourcemanager, logging to /usr/local/hadoop-2.7.6/logs/yarn-hadoop-resourcemanager-strong.hadoop.com.out
    localhost: starting nodemanager, logging to /usr/local/hadoop-2.7.6/logs/yarn-hadoop-nodemanager-strong.hadoop.com.out
    2)开启历史服务器,才能在web中查看任务运行情况
    [hadoop@strong hadoop-2.7.6]$ sbin/mr-jobhistory-daemon.sh start historyserver
    starting historyserver, logging to /usr/local/hadoop-2.7.6/logs/mapred-hadoop-historyserver-strong.hadoop.com.out
    3)查看YARN启动
    [hadoop@strong hadoop-2.7.6]$ jps
    4034 DataNode
    5007 ResourceManager
    5422 JobHistoryServer
    5494 Jps
    3939 NameNode
    5108 NodeManager
    4230 SecondaryNameNode
    4)再次运行wordcount示例
    [hadoop@strong hadoop-2.7.6]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar wordcount input output
    [hadoop@strong hadoop-2.7.6]$ ./bin/hdfs dfs -cat output/*
    Hello	2
    first	1
    hadoop	3
    is	1
    learn	1
    love	1
    my	1
    this	1
    time	1
    to	1
    5)在浏览器查看YARN

    ResourceManager 默认URL:http://localhost:8088

    点击上图History,出现如下界面:

    至此,Hadoop伪分布式集群安装及配置完成,这个安装只有HDFS、YARN,MapReduce等基本组件。

  • 相关阅读:
    vue多个自定义组件动态显示
    vue弹出多个弹框,并可以拖动弹框
    localStorage和sessionStorage
    Sharepoint ListTemplateId
    SharePoint 上传文档太大 无法上传
    Stream Byte[] 转换
    C#转义字符 单引号 双引号 换行 回车 斜杠
    c#中如何获取本机用户名、MAC地址、IP地址、硬盘ID、CPU序列号、系统名称、物理内存
    SharePoint Content Type ID's
    Visual Studio Tip: Get Public Key Token for a Strong Named Assembly 添加强命名 获取强命名值
  • 原文地址:https://www.cnblogs.com/alen-liu-sz/p/12975638.html
Copyright © 2011-2022 走看看