zoukankan      html  css  js  c++  java
  • 【449】backup get weekly tweets

    import pandas as pd
    from datetime import datetime
    
    fn = r"D:OneDrive - UNSW	weets_flu.csv"
    df = pd.read_csv(fn)
    for i in range(len(df)):
    	t = df.iloc[i]['created_at']
    	w = datetime.strptime(t, "%Y-%m-%d %H:%M:%S").strftime("%W")
    	ws.append(w)
    
    ws = []
    df['ws'] = ws
    df['ws'].value_counts()
    

     

    import pandas as pd
    from datetime import datetime
    
    fn = r"D:OneDrive - UNSW	weets_flu.csv"
    df = pd.read_csv(fn)
    for i in range(len(df)):
    	t = df.iloc[i]['created_at']
    	w = datetime.strptime(t, "%Y-%m-%d %H:%M:%S").strftime("%W")
    	ws.append(w)
    
    ws = []
    df['ws'] = ws
    df['ws'].value_counts()
    
    wss = []
    
    for i in a.index:
    	wss.append((i, a[i]))
    
    sorted(wss, key=lambda x:x[0])
    [('12', 56), ('13', 22), ('14', 41), ('15', 52), ('16', 25), ('17', 45), ('18', 63), ('19', 54), ('20', 51), ('21', 143), ('22', 77), ('23', 53), ('24', 133), ('25', 93), ('26', 77), ('27', 125), ('28', 63), ('29', 67), ('30', 56), ('31', 67), ('32', 62), ('33', 67), ('34', 54), ('35', 41), ('36', 43), ('37', 24), ('38', 29), ('39', 33), ('40', 14)]
    

    save data in csv file.

    fn = r"D:OneDrive - UNSW1-UNSW2-Papers20190514-Prediction Location of TwitterDataPaperweekly_tweets.csv"
    
    fo = open(fn, "w+")
    for e in a:
    	fo.write(e[0] + ", " + str(e[1]) + "
    ")
    
    >>> import re
    >>> def word_extraction(sentence):
    	ignore = ['a', "the", "is"]
    	words = re.sub("[^w]", " ",  sentence).split()
    	cleaned_text = [w.lower() for w in words if w not in ignore]
    	return cleaned_text
    
    >>> a = "alex is. good guy."
    >>> word_extraction(a)
    ['alex', 'good', 'guy']
    >>> a = ["fluence", 'good']
    >>> b = 'flu'
    >>> b in a
    False
    >>> 'go' in a
    False
    >>> 'good' in a
    True
    
    >>> import nltk
    >>> nltk.download('stopwords')
    [nltk_data] Downloading package stopwords to
    [nltk_data]     C:Usersz5194293AppDataRoaming
    ltk_data...
    [nltk_data]   Unzipping corporastopwords.zip.
    True
    >>> from nltk.corpus import stopwords
    >>> stopwords.words('english')
    ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"]
    
    Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32
    Type "copyright", "credits" or "license()" for more information.
    >>> fn = r"D:DataCSVAUS_AVG_tweets_Centroid_Lon_lat.csv"
    >>> import pandas as pd
    >>> df = pd.read_csv(fn)
    >>> df.head()
       OBJECTID_1  OBJECTID    ...           d_y   distance
    0           1         1    ...      0.009560   1.149847
    1           2         2    ...      0.204213  36.363808
    2           3         3    ...     -0.003238   0.394919
    3           4         4    ...      0.000109   1.063002
    4           5         5    ...     -0.004560   0.549273
    
    [5 rows x 14 columns]
    >>> df.columns
    Index(['OBJECTID_1', 'OBJECTID', 'SA2_NAME16', 'CENTROID_X', 'CENTROID_Y',
           'State', 'Count_', 'Avg_co_lon', 'Avg_co_lat', 'Shape_Length',
           'Shape_Area', 'd_x', 'd_y', 'distance'],
          dtype='object')
    >>> dff = df[['SA2_NAME16']]
    >>> dff.head()
                          SA2_NAME16
    0                         Albany
    1                  Albany Region
    2  Alexander Heights - Koondoola
    3             Alkimos - Eglinton
    4           Applecross - Ardross
    >>> dff = df[['SA2_NAME16', 'CENTROID_X']]
    >>> dff.head()
                          SA2_NAME16  CENTROID_X
    0                         Albany  117.899601
    1                  Albany Region  118.207172
    2  Alexander Heights - Koondoola  115.865812
    3             Alkimos - Eglinton  115.677976
    4           Applecross - Ardross  115.836085
    >>> dff = df[['SA2_NAME16', 'CENTROID_X', 'CENTROID_Y', 'State', 'Avg_co_lon', 'Avg_co_lat', 'Shape_Area']]
    >>> dff.head()
                          SA2_NAME16  CENTROID_X    ...      Avg_co_lat Shape_Area
    0                         Albany  117.899601    ...      -35.017921   0.003012
    1                  Albany Region  118.207172    ...      -34.923186   0.394533
    2  Alexander Heights - Koondoola  115.865812    ...      -31.831628   0.000638
    3             Alkimos - Eglinton  115.677976    ...      -31.600350   0.003104
    4           Applecross - Ardross  115.836085    ...      -32.014606   0.000518
    
    [5 rows x 7 columns]
    >>> dff.columns
    Index(['SA2_NAME16', 'CENTROID_X', 'CENTROID_Y', 'State', 'Avg_co_lon',
           'Avg_co_lat', 'Shape_Area'],
          dtype='object')
    >>> dff.to_csv(r"D:DataCSVAUS_AVG_tweets_Centroid_Lon_lat_lite.csv", index=False")
    	       
    SyntaxError: EOL while scanning string literal
    >>> dff.to_csv(r"D:DataCSVAUS_AVG_tweets_Centroid_Lon_lat_lite.csv", index=False)
    	       
    >>> dff = pd.read_csv(r"D:DataCSVAUS_AVG_tweets_Centroid_Lon_lat_lite.csv")
    	       
    >>> dff.head()
    	       
                                NAME       CEN_X    ...         AVG_Y      AREA
    0                         Albany  117.899601    ...    -35.017921  0.003012
    1                  Albany Region  118.207172    ...    -34.923186  0.394533
    2  Alexander Heights - Koondoola  115.865812    ...    -31.831628  0.000638
    3             Alkimos - Eglinton  115.677976    ...    -31.600350  0.003104
    4           Applecross - Ardross  115.836085    ...    -32.014606  0.000518
    
    [5 rows x 7 columns]
    >>> dff.columns
    	       
    Index(['NAME', 'CEN_X', 'CEN_Y', 'STATE', 'AVG_X', 'AVG_Y', 'AREA'], dtype='object')
    >>> 
    

     

  • 相关阅读:
    前端插件集合
    建立controller
    W3C对DOM2.0定义的标准事件
    事件代理和委托学习
    css3属性flex弹性布局设置三列(四列)分布样式
    css+html 关于文本的总结(整理中)
    jquery阻止事件冒泡的3种方式
    web前端打印总结
    前端打印插件
    object实现小老鼠交互
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/11829709.html
Copyright © 2011-2022 走看看