zoukankan      html  css  js  c++  java
  • 04-人脸识别-triplets loss 的解释(转载)

    转载至:

    https://blog.csdn.net/tangwei2014/article/details/46788025

    下面是内容:

    【前言】 
    最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等。learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种。

    【理解triplet】

    这里写图片描述

    如上图所示,triplet是一个三元组,这个三元组是这样构成的:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor (记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative (记为x_n),由此构成一个(Anchor,Positive,Negative)三元组。

    【理解triplet loss】 
    有了上面的triplet的概念, triplet loss就好理解了。针对三元组中的每个元素(样本),训练一个参数共享或者不共享的网络,得到三个元素的特征表达,分别记为:这里写图片描述 。triplet loss的目的就是通过学习,让x_a和x_p特征表达之间的距离尽可能小,而x_a和x_n的特征表达之间的距离尽可能大,并且要让x_a与x_n之间的距离和x_a与x_p之间的距离之间有一个最小的间隔这里写图片描述。公式化的表示就是: 
    这里写图片描述

    对应的目标函数也就很清楚了: 
    这里写图片描述 
    这里距离用欧式距离度量,+表示[]内的值大于零的时候,取该值为损失,小于零的时候,损失为零。 
    由目标函数可以看出:

    • 当x_a与x_n之间的距离 < x_a与x_p之间的距离加这里写图片描述时,[]内的值大于零,就会产生损失。
    • 当x_a与x_n之间的距离 >= x_a与x_p之间的距离加这里写图片描述时,损失为零。

    【triplet loss 梯度推导】 
    上述目标函数记为L。则当第i个triplet损失大于零的时候,仅就上述公式而言,有: 
    这里写图片描述

    【算法实现时候的提示】 
    可以看到,对x_p和x_n特征表达的梯度刚好利用了求损失时候的中间结果,给的启示就是,如果在CNN中实现 triplet loss layer, 如果能够在前向传播中存储着两个中间结果,反向传播的时候就能避免重复计算。这仅仅是算法实现时候的一个Trick。

  • 相关阅读:
    android 工具类 DateUtil
    POJ1580 水题,积累!
    POJ1159,Palindrome
    iOS开发UI篇章 15-项目中的常见文件
    MongoDB:Map-Reduce
    三层架构下实现用户登陆C#
    Inno Setup 安装inf文件的一个例子
    delphi 主线程向子线程发送消息
    PeekMessage和GetMessage函数的主要区别
    delphi SPCOMM的一些用法注意
  • 原文地址:https://www.cnblogs.com/alexYuin/p/8855972.html
Copyright © 2011-2022 走看看