"""An example of how to use your own dataset to train a classifier that recognizes people. """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # @ 调用格式: # @ # @ 训练模型记住人脸(不是训练网络,网络在这之前已经先训练好了)。 # @ ../lfw/ 是lfw数据集经过 mtcnn 截取以后的结果。否则会影响效果(去除数据集中的人脸外部干扰) # @ python classifier.py TRAIN ../lfw/ 20170511-185253/ train_20180419_2048.pkl # @ # @ 测试模型记住人脸的结果。(../data 是测试用的图的路径。) # @ python classifier.py CLASSIFY ../data/ 20170511-185253/ train_20180419_2048.pkl from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import argparse import facenet import os import sys import math import pickle from sklearn.svm import SVC # @ args内中参数见函数 parse_arguments def main(args): # @ 声明一个计算图,都这么写,没有就是默认一个。 with tf.Graph().as_default(): # @ 声明一个 Session with tf.Session() as sess: # @ Part I # @ 这部分是计算人脸的 embedding 特征。费时。 # @ # @ 加随机数seed,调用np.random.random()的结果都会相同。 np.random.seed(seed=args.seed) if args.use_split_dataset: dataset_tmp = facenet.get_dataset(args.data_dir) train_set, test_set = split_dataset(dataset_tmp, args.min_nrof_images_per_class, args.nrof_train_images_per_class) if (args.mode=='TRAIN'): dataset = train_set elif (args.mode=='CLASSIFY'): dataset = test_set else: dataset = facenet.get_dataset(args.data_dir) # Check that there are at least one training image per class # @ cls.image_paths 是每张图的路径,包含文件名。 for cls in dataset: assert(len(cls.image_paths)>0, 'There must be at least one image for each class in the dataset') # @ 分离出图片路径名paths,和类型labels(人脸所属人名) paths, labels = facenet.get_image_paths_and_labels(dataset) print('Number of classes: %d' % len(dataset)) print('Number of images: %d' % len(paths)) # Load the model # @ 这里加的 model 使用于生成人脸的 embedding 特征的网络。 # @ 这个网络是事先已经生成好的。 # @ 网络可以根据运行的平台,设计成不同大小。比如基于GoogleNet/AlexNet等 print('Loading feature extraction model') facenet.load_model(args.model) # Get input and output tensors # @ TensorFlow的参数准备。embeddings 是网络的输出,是后续分类的输入。 images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] # Run forward pass to calculate embeddings print('Calculating features for images') nrof_images = len(paths) # @ 图片总数 nrof_batches_per_epoch = int(math.ceil(1.0*nrof_images / args.batch_size)) emb_array = np.zeros((nrof_images, embedding_size)) for i in range(nrof_batches_per_epoch): start_index = i*args.batch_size end_index = min((i+1)*args.batch_size, nrof_images) paths_batch = paths[start_index:end_index] images = facenet.load_data(paths_batch, False, False, args.image_size) feed_dict = { images_placeholder:images, phase_train_placeholder:False } emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict) # @ emb_array 是 embedding 结果。一个 embedding 有 18 维。 # @ 接下来就是用机器学习的方法分类。 classifier_filename_exp = os.path.expanduser(args.classifier_filename) # @ Part II 也较费时。 # @ 这部分是训练分类人脸的机器学习模型,这里使用的SVC,是SVM的一种。 # @ 若是 CLASSIFY ,则是加载训练结果,建立 SVC 分类器。 if (args.mode=='TRAIN'): # Train classifier # @ SVC是SVM的一种Type,是用来的做分类的;同样还有SVR,是SVM的另一种Type,是用来的做回归的。 print('Training classifier') model = SVC(kernel='linear', probability=True) model.fit(emb_array, labels) # @ 训练过程 # @ 训练结束,保存数据 # Create a list of class names class_names = [ cls.name.replace('_', ' ') for cls in dataset] # Saving classifier model with open(classifier_filename_exp, 'wb') as outfile: pickle.dump((model, class_names), outfile) print('Saved classifier model to file "%s"' % classifier_filename_exp) elif (args.mode=='CLASSIFY'): # Classify images print('Testing classifier') # @ 加载数据,建立分类器 with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) print('Loaded classifier model from file "%s"' % classifier_filename_exp) # @ 预测,标签结果应该是 one_hot 的。 predictions = model.predict_proba(emb_array) best_class_indices = np.argmax(predictions, axis=1) # @ 输出每列最大的序号。 best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices] for i in range(len(best_class_indices)): print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i])) # @ 评估结果。labels 是测试集的实际结果,best_class_indices是预测结果。 accuracy = np.mean(np.equal(best_class_indices, labels)) print('Accuracy: %.3f' % accuracy) # @ 将数据集分成训练集和测试集 def split_dataset(dataset, min_nrof_images_per_class, nrof_train_images_per_class): train_set = [] test_set = [] for cls in dataset: paths = cls.image_paths # Remove classes with less than min_nrof_images_per_class if len(paths)>=min_nrof_images_per_class: np.random.shuffle(paths) train_set.append(facenet.ImageClass(cls.name, paths[:nrof_train_images_per_class])) test_set.append(facenet.ImageClass(cls.name, paths[nrof_train_images_per_class:])) return train_set, test_set # @ 命令行参数,使用的系统库 argparse # @ ** 写法值得记住 ** def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('mode', type=str, choices=['TRAIN', 'CLASSIFY'], help='Indicates if a new classifier should be trained or a classification ' + 'model should be used for classification', default='CLASSIFY') parser.add_argument('data_dir', type=str, help='Path to the data directory containing aligned LFW face patches.') parser.add_argument('model', type=str, help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file') parser.add_argument('classifier_filename', help='Classifier model file name as a pickle (.pkl) file. ' + 'For training this is the output and for classification this is an input.') parser.add_argument('--use_split_dataset', help='Indicates that the dataset specified by data_dir should be split into a training and test set. ' + 'Otherwise a separate test set can be specified using the test_data_dir option.', action='store_true') parser.add_argument('--test_data_dir', type=str, help='Path to the test data directory containing aligned images used for testing.') parser.add_argument('--batch_size', type=int, help='Number of images to process in a batch.', default=90) parser.add_argument('--image_size', type=int, help='Image size (height, width) in pixels.', default=160) parser.add_argument('--seed', type=int, help='Random seed.', default=666) parser.add_argument('--min_nrof_images_per_class', type=int, help='Only include classes with at least this number of images in the dataset', default=20) parser.add_argument('--nrof_train_images_per_class', type=int, help='Use this number of images from each class for training and the rest for testing', default=10) return parser.parse_args(argv) # @ 主函数 # @ sys.argv[1:] 就是命令行输入的 classify.py 后面的所有字符串,以空格分隔。 if __name__ == '__main__': main(parse_arguments(sys.argv[1:]))