题目描述
给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
输入数据:
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出数据:
输出一个整数,代表K倍区间的数目。
样例输入
5 2
1
2
3
4
5
样例输出
6
资源约定
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
题目思路
求区间[l,r]的和是k的倍数的个数。求区间和,我们可以通过前缀和来求出。我们规定sum[i]表示第1个元素到第i个元素的和。那么sum[r] - sum[l-1]就是区间[l,r]的和。区间[l,r]的和是k的倍数即(sum[r] - sum[l-1])%k == 0 即sum[r]%k == sum[l-1]%k
那么,我们求出每个前缀和,在求的过程中取模,两个相等的前缀和就能组成一个k倍区间。我们可以在计算完前缀和以后,使用两层for循环来计数k倍区间的个数。但是由于数据量较大,这样是会超时的。那么我们是否能在计算前缀和的过程中来记录k倍区间的个数呢?
我们用一个数组cnt[i]表示当前位置之前,前缀和取模后等于i的个数。举个例子:
数列 1 2 3 4 5 mod = 2
对前1个数的和取模, 为1 之前有0个前缀和取模后为1,个数+0
对前2个数的和取模, 为1 之前有1个前缀和取模后为1,个数+1
对前3个数的和取模, 为0 之前有0个前缀和取模后为0, 个数+0
对前4个数的和取模, 为0 之前有1个前缀和取模后为0,个数+1
对钱5个数的和取模, 为1 之前有2个前缀和取模后为1,个数+2
到目前为止ans = 4。但是ans应该等于6,因为这样计算后,我们漏掉了前i个数的和取模是k的倍数的情况,即[0,i]区间和是k的倍数,因此,我们要在ans = 4 的基础上 加上前缀和取模后为0的个数 即ans+2 = 6;
代码
#include <cstdio>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#define LL long long
#define MAXN 1000
using namespace std;
/*
前缀和
*/
int sum[100001]; // sum[i] 前i个元素的和
int num[100001];
int cnt[100001];
int n,k;
LL ans = 0;
int main(){
//freopen("input.txt","r",stdin);
memset(cnt, 0, sizeof(cnt));
memset(sum, 0, sizeof(sum));
scanf("%d%d",&n, &k);
for(int i = 1; i <= n; i++){
scanf("%d",&num[i]);
sum[i] = (sum[i-1] + num[i])%k;
ans += cnt[sum[i]];
cnt[sum[i]]++;
}
printf("%lld
",ans+cnt[0]);
return 0;
}