zoukankan      html  css  js  c++  java
  • 机器学习

    import numpy as np
    import matplotlib.pyplot as plt
    #用最小距离法(minimum distance algorithm)去检测目标点属于哪一个set
    
    
    #the distance of point x and point y
    def dist(x,y):
    	return np.sqrt(np.sum((x - y) ** 2))
    
    #Well-Known points to train
    X_train = np.array([[1,1],[2,2.5],[3,1.2],[5.5,6.3],[6,9],[7,6]])
    #Colors of each point
    Y_train = ['red','red','red','blue','blue','blue']
    #Testing point, to find this point is red or blue
    X_test = np.array([3,4])
    
    num = len(X_train)	# Number of points in X_train
    distance = np.zeros(num)	# Numpy arrays of zeros
    for i in range(num):
    	distance[i] = dist(X_train[i],X_test)
    print(distance)
    
    min_index = np.argmin(distance)		# Index with smallest distance
    print("The color of point X_test is %s" % (Y_train[min_index]))
    print("Point X_test is close to point %s" % (X_train[min_index]))
    
    
    #scatter : 散点图
    plt.figure()
    plt.scatter(X_train[:,0],X_train[:,1],s = 170, color = Y_train[:])      #s的意思是 假如maker是圆点 r*r = s(这里是170)
    plt.scatter(X_test[0],X_test[1],s = 170, color = 'green')
    plt.show()
    

  • 相关阅读:
    jquery文本折叠
    物理小词典
    程序员的十层楼
    各种语言的hello world
    读书遇到的一些概念
    银行业务一些概念
    mysql 基本操作
    oracle 基本操作
    maven 基本操作
    ubuntu JavaWeb环境搭建
  • 原文地址:https://www.cnblogs.com/allen2333/p/8904732.html
Copyright © 2011-2022 走看看