zoukankan      html  css  js  c++  java
  • 【原】 POJ 1050 To the Max 求二维矩阵的最大子矩阵 解题报告

    http://poj.org/problem?id=1050


    方法:二维转一维
    1、使用积累数组cumarr[1...n][1...n],使得求任意块儿子矩阵和的复杂度为O(1),cumarr[i][j]为cumarr[1...i][1...j]子矩阵的和,
        通过cumarr[i][j]=cumarr[i-1][j]+cumarr[i][j-1]-cumarr[i-1][j-1]计算积累数组,复杂度为O(N*N),
    2、枚举+dp
        对矩阵的行枚举,确定矩阵区域的上下界imin和imax,此时就可以进行类似一维数组最大和的方法,每个枚举的矩阵区域负责度O(N)。
    总复杂度为O(N*N)+(N*N)*O(N)=O(N^3)

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
    As an example, the maximal sub-rectangle of the array:
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    is in the lower left corner:
    9 2
    -4 1
    -1 8
    and has a sum of 15.

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4

    0 -2 -7 0 9 2 -6 2

    -4 1 -4 1 -1

    8 0 -2

    Sample Output

    15

       1: #include <stdio.h>
       2: #include <iostream>
       3:  
       4: using namespace std ;
       5:  
       6: //只用1...n,以便和积累数组对应
       7: int a[101][101];
       8: int cumarr[101][101];
       9:  
      10: void run1050()
      11: {
      12:     int n,val ;
      13:     int i,j ;
      14:     int imin,imax ;
      15:     int maxendinghere,maxsofar ;
      16:     int tmp ;
      17:     
      18:     scanf( "%d", &n );
      19:  
      20:     //积累数组边界值
      21:     for( i=0 ; i<=n ; ++i )
      22:     {
      23:         cumarr[0][i] = 0 ;
      24:         cumarr[i][0] = 0 ;
      25:     }
      26:  
      27:     //输入矩阵并求得积累数组
      28:     for( i=1 ; i<=n ; ++i )
      29:     {
      30:         for( j=1 ; j<=n ; ++j )
      31:         {
      32:             scanf( "%d", &(a[i][j]) ) ;
      33:             cumarr[i][j] = cumarr[i-1][j] + cumarr[i][j-1] - cumarr[i-1][j-1] + a[i][j] ;
      34:         }
      35:     }
      36:  
      37:     //对矩阵的行枚举,确定矩阵区域的上下界imin和imax,
      38:     maxsofar = a[1][1] ;
      39:     for( imin=1 ; imin<=n ; ++imin )
      40:     {
      41:         for( imax=imin ; imax<= n ; ++imax )
      42:         {
      43:             //进行类似一维数组最大和的方法
      44:             maxendinghere = cumarr[imax][1] - cumarr[imin-1][1] ;
      45:             for( j = 2 ; j<=n ; ++j )
      46:             {
      47:                 tmp = cumarr[imax][j] - cumarr[imin-1][j] - cumarr[imax][j-1] + cumarr[imin-1][j-1] ;
      48:                 maxendinghere = std::max( maxendinghere+tmp , tmp ) ;
      49:                 maxsofar = std::max( maxsofar , maxendinghere ) ;
      50:             }
      51:         }
      52:     }
      53:  
      54:     printf( "%d\n", maxsofar ) ;
      55: }

    如果您满意我的博客,请点击“订阅Allen Sun的技术博客”即可订阅,谢谢:)

    原创文章属于Allen Sun
    欢迎转载,但请注明文章作者Allen Sun和链接
  • 相关阅读:
    使用JDBC连接并操作数据库
    JDBC连接数据库的url设useSSL参数为true产生的问题
    0-1背包问题的学习及LeetCode相关习题练习
    MySQL---操作数据库
    6、Python Requests库高级操作【2】
    5、Python Requests库高级操作【1】
    4、Python 数据解析【2】
    3、Python 数据解析【1】
    Python正则re.S,re.I等作用
    2、Python 使用Requests库通用爬取数据操作
  • 原文地址:https://www.cnblogs.com/allensun/p/1869401.html
Copyright © 2011-2022 走看看