zoukankan      html  css  js  c++  java
  • POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)

    Description

    A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 

     
    In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

    For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. 

    Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

    Output

    Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

    Sample Input

    2
    16
    1 14
    8 5
    10 16
    5 9
    4 6
    8 4
    4 10
    1 13
    6 15
    10 11
    6 7
    10 2
    16 3
    8 1
    16 12
    16 7
    5
    2 3
    3 4
    3 1
    1 5
    3 5
    

    Sample Output

    4
    3
    
    
    
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<limits.h>
    #include<vector>
    typedef long long LL;
    using namespace std;
    #define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
    #define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
    #define CLEAR( a , x ) memset ( a , x , sizeof a )
    const int maxn=10005;
    int n,uu,vv;
    vector<int>v[maxn];
    int pre[maxn],vis[maxn];
    bool root[maxn];
    int find_root(int x)
    {
        if(pre[x]!=x)
            x=find_root(pre[x]);
        return pre[x];
    }
    void Union(int x,int y)
    {
        x=find_root(x);
        y=find_root(y);
        if(x!=y)   pre[y]=x;
    }
    void LCA(int x)
    {
        for(int i=0;i<v[x].size();i++)
        {
            LCA(v[x][i]);
            Union(x,v[x][i]);
        }
        vis[x]=1;
        if(x==uu&&vis[vv]==1)
        {
            printf("%d
    ",find_root(vv));
            return ;
        }
        if(x==vv&&vis[uu]==1)
        {
            printf("%d
    ",find_root(uu));
            return ;
        }
    }
    void init()
    {
        REP(i,maxn)
        {
            v[i].clear();
            pre[i]=i;
            root[i]=true;
            vis[i]=0;
        }
    }
    void solve()
    {
        REPF(i,1,n)
        {
            if(root[i]==true)
            {
                LCA(i);
                break;
            }
        }
    //   for(int i=1;i<=n;i++)
    //        printf("222222  %d
    ",pre[i]);
    }
    int main()
    {
        int t,a,b;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d",&n);
            init();
            REPF(i,1,n-1)
            {
                scanf("%d%d",&a,&b);
                v[a].push_back(b);
                root[b]=false;
            }
            scanf("%d%d",&uu,&vv);
            solve();
        }
        return 0;
    }
    



  • 相关阅读:
    Windows服务器上Mysql为设置允许远程连接提示:not allowed to connect to this MySQL server
    Java中怎样遍历两个Date日期之间的每一天
    ElementUI中el-table设置指定列固定不动,不受滚动条影响
    APP测试时不可忽视搭建代理服务器抓包测试的必要性
    ctype库试运行
    django-grappelli 安装配置
    windows下django1.7 +python3.4.2搭建记录2
    windows下django1.7 +python3.4.2搭建记录1
    【2020-11-15】大心境并不能自动化解小结
    【2020-11-14】对自己责任心的煎熬考验
  • 原文地址:https://www.cnblogs.com/blfshiye/p/5075233.html
Copyright © 2011-2022 走看看