Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Analyse: DP. From bottom to up, compute the shortest path from next level to this level's elements.
1 class Solution { 2 public: 3 int minimumTotal(vector<vector<int>>& triangle) { 4 if(triangle.empty() || triangle[0].empty()) return 0; 5 6 vector<int> dp = triangle.back(); 7 for(int i = triangle.size() - 2; i >= 0; i--) { 8 for(int j = 0; j <= i; j++) 9 dp[j] = triangle[i][j] + min(dp[j], dp[j + 1]); 10 } 11 12 return dp[0]; 13 } 14 };