zoukankan      html  css  js  c++  java
  • Binary Tree Tilt

    Given a binary tree, return the tilt of the whole tree.

    The tilt of a tree node is defined as the absolute difference between the sum of all left subtree node values and the sum of all right subtree node values. Null node has tilt 0.

    The tilt of the whole tree is defined as the sum of all nodes' tilt.

    Example:

    Input: 
             1
           /   
          2     3
    Output: 1
    Explanation: 
    Tilt of node 2 : 0
    Tilt of node 3 : 0
    Tilt of node 1 : |2-3| = 1
    Tilt of binary tree : 0 + 0 + 1 = 1
    

    Note:

    1. The sum of node values in any subtree won't exceed the range of 32-bit integer.
    2. All the tilt values won't exceed the range of 32-bit integer.
     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     private int tilt = 0;
    12     
    13     public int findTilt(TreeNode root) {
    14         subtreeSum(root);
    15         return tilt;
    16     }
    17     
    18     private int subtreeSum(TreeNode root) {
    19         if (root == null) return 0;
    20         if (root.left == null && root.right == null) return root.val;
    21         
    22         int leftSum = subtreeSum(root.left);
    23         int rightSum = subtreeSum(root.right);
    24         tilt += Math.abs(leftSum - rightSum);
    25         return root.val + leftSum + rightSum;
    26     }
    27 }
     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     public int findTilt(TreeNode root) {
    12         if (root == null) return 0;
    13         if (root.left == null && root.right == null) return 0;
    14         
    15         int myTilt = findNodeTilt(root);
    16         return myTilt + findTilt(root.left) + findTilt(root.right);
    17     }
    18     
    19     public int findNodeTilt(TreeNode root) {
    20         if (root == null) return 0;
    21         if (root.left == null && root.right == null) return 0;
    22         int leftSum = subtreeSum(root.left);
    23         int rightSum = subtreeSum(root.right);
    24         
    25         return Math.abs(leftSum - rightSum);
    26     }
    27     
    28     private int subtreeSum(TreeNode root) {
    29         if (root == null) return 0;
    30         if (root.left == null && root.right == null) return root.val;
    31         
    32         return root.val + subtreeSum(root.left) + subtreeSum(root.right);
    33     }
    34 }
     1 /**
     2  * Definition for a binary tree node.
     3  * public class TreeNode {
     4  *     int val;
     5  *     TreeNode left;
     6  *     TreeNode right;
     7  *     TreeNode(int x) { val = x; }
     8  * }
     9  */
    10 public class Solution {
    11     private HashMap<TreeNode, Integer> treeSum;
    12     
    13     public int findTilt(TreeNode root) {
    14         treeSum = new HashMap<TreeNode, Integer>();
    15         subtreeSum(root);
    16         return findTiltHelper(root);
    17     }
    18     
    19     private int findTiltHelper(TreeNode root) {
    20         if (root == null) return 0;
    21         if (root.left == null && root.right == null) return 0;
    22         
    23         int myTilt = findNodeTilt(root);
    24         return myTilt + findTiltHelper(root.left) + findTiltHelper(root.right);
    25     }
    26     
    27     public int findNodeTilt(TreeNode root) {
    28         if (root == null) return 0;
    29         if (root.left == null && root.right == null) return 0;
    30         int leftSum = treeSum.containsKey(root.left) ? treeSum.get(root.left) : 0;
    31         int rightSum = treeSum.containsKey(root.right) ? treeSum.get(root.right) : 0;
    32         
    33         return Math.abs(leftSum - rightSum);
    34     }
    35     
    36     private int subtreeSum(TreeNode root) {
    37         if (root == null) {
    38             treeSum.put(root, 0);
    39             return 0;
    40         }
    41         if (root.left == null && root.right == null) {
    42             treeSum.put(root, root.val);
    43             return root.val;
    44         }
    45         if (treeSum.containsKey(root)) return treeSum.get(root);
    46         
    47         int leftSum = subtreeSum(root.left);
    48         int rightSum = subtreeSum(root.right);
    49         int sum = root.val + leftSum + rightSum;
    50         treeSum.put(root, sum);
    51         return sum;
    52     }
    53 }
  • 相关阅读:
    ZOJ 1234 Chopsticks
    ZOJ1238 Guess the Number
    ZOJ 1243 URLs
    IP地址的分类
    可变字符串NSMutableString(ios)
    Object-C 声明属性为什么用下划线
    @property的属性weak nonatomic strong等介绍(ios)
    super self的区别(ios)
    iOS概述
    多态
  • 原文地址:https://www.cnblogs.com/amazingzoe/p/6791732.html
Copyright © 2011-2022 走看看