这篇文章主要介绍了用Python和erlang输出一个杨辉三角的例子,同时还提供了一个erlang版杨辉三角,需要的朋友可以参考下
关于杨辉三角是什么东西,右转维基百科:杨辉三角
稍微看一下直观一点的图:
![用Python输出一个杨辉三角的例子](http://simg.sinajs.cn/blog7style/images/common/sg_trans.gif)
杨辉三角有以下几个特点:
每一项的值等于他左上角的数和右上角的数的和,如果左上角或者右上角没有数字,就按0计算。
第N层项数总比N-1层多1个
计算第N层的杨辉三角,必须知道N-1层的数字,然后将相邻2项的数字相加,就能得到下一层除了最边上2个1的所有数字。 听起来有点像递归的思想,我们不妨假设我们已经知道N-1层的数字,来计算一下N层的数字吧。
def _yanghui_trangle(n, result):
上面代码中,result表示N-1层杨辉三角的数字。实习上,我们在列表2端各补了一个0,然后计算相邻项的和,就可以直接得到结果。
稍微完善一下代码:
def yanghui_trangle(n):
if __name__ == "__main__":
_yanghui_trangle可以用lambda的方式简写,但是可读性感觉会变差,所以还是保持现状好了。
tips: 上面的程序并没有考虑数据格式化的问题,也就是说输出不是完美的三角形。
鉴于最近在学习erlang,补上一个erlang版本的,性能上没有测试过,不过还是要惊叹于函数式语言的表达能力:
-module(yanghui).
-author(lfyzjck).
-export([triangle/1]).
triangle_next(P)
->
triangle(1) ->
triangle(N) ->