zoukankan      html  css  js  c++  java
  • SPSS缺失值得分析处理

    SPSS缺失值得分析处理

    在资料收集的过程中,由于各种原因可能导致数据收集不全,就会产生缺失值,且这种情况往往无法避免。如果缺失值处理不当,就会导致分析结果精度降低,出现偏倚甚至是错误的理论,因此缺失值的分析显得尤为重要。数据的缺失经常会存在着一定的规律,为了认识和研究缺失数据,按照数据缺失形式,我们常将其分为单元缺失与项目缺失两种。

    (1)单元缺失:只针对需调查的个案进行调查而没有得到个案信息。如对整个班级进行调查,发放60分调查表,部分调查对象未交回调查表导致的资料缺失。这种缺失在数据分析阶段常常无能为力。

    (2)项目缺失:指在调查内容中某些变量的观测结果有缺失。如对整个班级进行调查后,收回的调查表中,部分女生因为“保密”而未填写体重一项,造成资料缺失。

    无论缺失数据的形式是单元缺失还是项目缺失,从缺失机制与方式上又可将其分为完全随机缺失、随机缺失与非随机缺失。

    (1)完全随机缺失(Missing Completely at Random,MCAR)指已评价的结果或即将要进行的评价结果中,研究对象的缺失率是独立的。即缺失现象完全随机发生,与自身或其他变量取值无关。如调查进行中,因被调查对象接到电话,或紧急事件马上离开,调查无完成导致缺失。

    (2)随机缺失(Missing at Random,MAR)指缺失数据的发生与数据库中其他无缺失变量的取值有关。某一观察值缺失的概率仅依赖已有的观察结果。比如,研究某新药对高血压患者的疗效,但一些血压过高的患者,根据纳入标准予以排除。MAR是最常见的缺失机制。

    (3)非随机缺失(MIssing Not at Random,MNAR)指数据的缺失不仅与其他变量的取值有关,缺失率与缺失数据有关,也和自身有关。这种缺失大都不是偶然因素所造成的,常常是不可忽略的,比如在调查收入时,收入高的人出于各种原因不愿意提供家庭年收入值。对于MNAR此种缺失机制,目前尚无特别有效的方法能进行处理。

    识别缺失数据的产生机制是极其重要的,首先这涉及到代表性问题,从统计上说,非随机缺失的数据会产生偏估计,因此不能很好地代表总体。其次,它决定数据插补方法的选择。随机缺失数据处理相对比较简单,但非随机缺失数据处理比较困难,原因在于偏差的程度难以把握。

    面对不同的数据缺失情况,那我们该如何处理呢?大致上我们把处理方法归为以下几类。

    1、删除缺失值

    最常见、最简单的处理缺失数据的方法,使用这种方法时,如果任何个案在某一变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例较小 的话,这一方法十分有效。然而,这种方法却有很大的局限性,它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。

    2、缺失值代替

    即“转换”选项卡中“替换缺失值”菜单过程。此过程将所有的记录看成一个序列,然后采用某种指标对缺失值进行填充,它实际上专门用于解决时间序列模型中的缺失值问题。虽然其中的一些填充方法也可以用于普通数据,但相比之下,如果在序列数据中使用该过程可能得不偿失,应当谨慎使用。常用的填充方式由算术均数、缺失值邻近点的算术均数、中位数以及线性插入等。

    3、缺失值分析

    此过程是SPSS专门针对缺失值分析而提供的模块,他提供了对缺失值问题全面而强大的分析能力,主要功能有以下3种:

    (1)缺失值的描述和快速诊断:用灵活的诊断报告来评估缺失值问题的严重性,用户可以观察到它们在哪些变量中出现,比例为多少,是否与其他变量取值有关,从而得知这些缺失值出现是否会影响分析结论。

    (2)得到更精确的统计量:提供了多种方法用于估计含缺失值数据的均值、相关矩阵或协方差矩阵,通过这些方法计算出的统计量将更加可靠。

    (3)用估计值替换缺失值:使用EM或回归法,用户可以从未缺失数据的分布情况中推算出缺失数据的估计值,从而能有效地使用所有数据进行分析,来提高统计结果的可信度。

    在前述的3种缺失机制中,非随机缺失很难得到有效的统计学处理,SPSS的缺失值分析模块主要是对MCAR和MAR的情形进行分析,尤其是后者。数据分析培训

  • 相关阅读:
    PHP开发APP接口(九)
    C#深入理解类型
    C#从委托、lambda表达式到linq总结
    C# ==和Equals()
    C# 泛型
    C# Reflection
    原声JS网络请求
    JavaScript预编译
    泛型初探
    C#内存分配
  • 原文地址:https://www.cnblogs.com/amengduo/p/9587248.html
Copyright © 2011-2022 走看看