zoukankan      html  css  js  c++  java
  • USACO Prime Cryptarithm

    //这题是一简单的一个递归    算锻炼水体熟练度吧~~~

    Prime Cryptarithm

    The following cryptarithm is a multiplication problem that can be solved by substituting digits from a specified set of N digits into the positions marked with *. If the set of prime digits {2,3,5,7} is selected, the cryptarithm is called a PRIME CRYPTARITHM.

          * * *     x    * *      -------        * * *         <-- partial product 1      * * *           <-- partial product 2      -------      * * * *  

    Digits can appear only in places marked by `*'. Of course, leading zeroes are not allowed.

    Note that the 'partial products' are as taught in USA schools. The first partial product is the product of the final digit of the second number and the top number. The second partial product is the product of the first digit of the second number and the top number.

    Write a program that will find all solutions to the cryptarithm above for any subset of digits from the set {1,2,3,4,5,6,7,8,9}. 
    PROGRAM NAME: crypt1
    INPUT FORMAT

    Line 1: N, the number of digits that will be used
    Line 2: N space separated digits with which to solve the cryptarithm

    SAMPLE INPUT (file crypt1.in) 

    5  2 3 4 6 8  


    OUTPUT FORMAT

    A single line with the total number of unique solutions. Here is the single solution for the sample input:

          2 2 2      x   2 2       ------        4 4 4      4 4 4    ---------      4 8 8 4  


    SAMPLE OUTPUT (file crypt1.out)

    1  

    /*
    ID: jun41821
    PROG: crypt1
    LANG: C++
    */
    #include <iostream>
    #include <cstring>
    #include <fstream>
    #include <algorithm>
    using namespace std;
    ofstream fout ("crypt1.out");
    ifstream fin ("crypt1.in");
    int jude(int x,int n[10],int length);
    int main()
    {
        int mul1[1005],mul2[105],n[10];
        int m1,m2,n1,n2,n3,k=0,i,j,t,num1,num2,num,N;
        fin>>N;
        for(i=0;i<N;i++)
        {
            fin>>n[i];                      //输入可用的数
        }
        //可能出现的两位数
        for(i=0;i<N;i++)
        {
            for(j=0;j<N;j++)
            {
                if(n[i]!=0)
                {
                    mul2[k]=n[i]*10+n[j];
                    k++;
                }
            }
        }
        num2=k+1;
        k=0;
        //肯能出现的三位数
        for(i=0;i<N;i++)
        {
            for(j=0;j<N;j++)
            {
                for(t=0;t<N;t++)
                {
                    if(n[i]!=0)
                    {
                        mul1[k]=n[i]*100+n[j]*10+n[t];
                        k++;
                    }
                }
            }
        }
        num1=k+1;
        num=0;
        for(i=0;i<num1;i++)
            for(j=0;j<num2;j++)
            {
                if(mul2[j]%10*mul1[i]>=100&&mul2[j]%10*mul1[i]<=999&&mul2[j]/10*mul1[i]<=999&&mul2[j]/10*mul1[i]>=100)
                    if(jude(mul2[j]%10*mul1[i],n,N)&&jude(mul2[j]/10*mul1[i],n,N))
                        if(mul2[j]*mul1[i]>=1000&&mul2[j]*mul1[i]<=9999)
                            if(jude(mul2[j]*mul1[i],n,N))
                                num++;
            }
        fout<<num<<endl;
        return 0;

    }
    int jude(int x,int n[],int length)
    {
        int i=0,t=0,k=0,l=0,f=0;
        if(x>999&&x<=9999)      //四位数
        {
            for(i=0;i<length;i++)
            {
                if(x%10==n[i])      //个位
                 t=1;
                 if(x%100/10==n[i])
                 k=1;
                 if(x/100%10==n[i])
                 l=1;
                 if(x/1000==n[i])
                 f=1;
            }
            if(t&&k&&l&&f)
            return 1;
            else return 0;
        }
        if(x>99&&x<=999)//三位数
        {
            for(i=0;i<length;i++)
            {
                if(x%10==n[i])      //个位
                 t=1;
                 if(x%100/10==n[i])
                 k=1;
                 if(x/100==n[i])
                 l=1;
            }
            if(t&&k&&l)
            return 1;
            else return 0;
        }
        if(x>9&&x<=99)
        {
             for(i=0;i<length;i++)
            {
                if(x%10==n[i])      //个位
                 t=1;
                 if(x%100/10==n[i])
                 k=1;
            }
            if(t&&k)
            return 1;
            else return 0;
        }
    }

  • 相关阅读:
    561. Array Partition I
    448. Find All Numbers Disappeared in an Array
    136. Single Number
    485. Max Consecutive Ones
    463. Island Perimeter
    496. Next Greater Element I
    344. Reverse String
    【.net项目中。。】.net一般处理程序使用方法
    【ExtAspNet学习笔记】ExtAspNet控件库中常见问题
    用VS2010创建三层架构开发模式及三层架构的研究
  • 原文地址:https://www.cnblogs.com/amourjun/p/5134200.html
Copyright © 2011-2022 走看看