zoukankan      html  css  js  c++  java
  • 吴恩达 MachineLearning Week6

    吴恩达 MachineLearning Week6

    第六周知识点总结

    1. 应将数据分割为训练集(training set)/交叉验证集(cross validation set)/测试集(test set)三个部分。
      训练集用于训练数据,验证集用于确定模型选定的参数维度,是否过拟合等,测试集用来最终测验模型效果。
    2. 模型的参数维度越小,越容易过拟合,体现在交叉验证集误差(cross validation error)会很大但可能会造成过拟合。
      一般随着参数维度的逐渐增加,训练集误差(train error)会越来越大,但泛化效果会越好,交叉验证即误差会减小。最终两个误差值会越来越接近并收敛。
    3. 对于过拟合或者高误差的解决方法一般有如下几种
      • 更多的训练集 —— 解决过拟合
      • 更少的参数维度 —— 解决过拟合
      • 更多的参数维度 —— 解决高误差
      • 增大lambda —— 解决过拟合
      • 减小lambda —— 解决高误差
    4. 有些时候可能会有偏斜数据问题(Skewed data)。如癌症发病率为 0.5% 如果预测模型对所有病人都预测未得癌症则该模型也能有99.5的正确率。这显然是不合适的。于是引入了如下几个量
      • Precision = true positive / (true positive + false positive)
      • Recall = true positive / (true positive + false negatvie)
      • Fscore = 2 * ( P * R ) / (P + R)

    其中 true positive 表示当实际得病,预测得病。False positive 表示实际未得病,预测值得病。
    false negative 表示实际得病,预测未得病。True negative 表示实际未得病,预测未得病。
    Precision 越高说明预测精度越高,预测得病的得病概率很高,但这样会导致低 Recall 值,即可能会漏诊。
    把得病的预测未得病的。最后用一个 Fscore 值来评价预测模型值越高越好。

    课后作业代码

    linearRegCostFunction.m

    function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
    %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear
    %regression with multiple variables
    %   [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the
    %   cost of using theta as the parameter for linear regression to fit the
    %   data points in X and y. Returns the cost in J and the gradient in grad
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost and gradient of regularized linear
    %               regression for a particular choice of theta.
    %
    %               You should set J to the cost and grad to the gradient.
    %
    
    
    theta_without1 = theta(2:end , :);
    
    J =  sum((X * theta - y) .^ 2) / ( 2 * m) + sum(lambda * theta_without1 .^ 2 /( 2 * m)) ;
    
    theta_without1 = theta;
    theta_without1(1) = 0;
    
    grad = X' * (X * theta - y) / m +  lambda * theta_without1 / m;
    
    
    
    
    % =========================================================================
    
    grad = grad(:);
    
    end
    
    

    learningCurve.m

    function [error_train, error_val] = ...
        learningCurve(X, y, Xval, yval, lambda)
    %LEARNINGCURVE Generates the train and cross validation set errors needed
    %to plot a learning curve
    %   [error_train, error_val] = ...
    %       LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
    %       cross validation set errors for a learning curve. In particular,
    %       it returns two vectors of the same length - error_train and
    %       error_val. Then, error_train(i) contains the training error for
    %       i examples (and similarly for error_val(i)).
    %
    %   In this function, you will compute the train and test errors for
    %   dataset sizes from 1 up to m. In practice, when working with larger
    %   datasets, you might want to do this in larger intervals.
    %
    
    % Number of training examples
    m = size(X, 1);
    
    % You need to return these values correctly
    error_train = zeros(m, 1);
    error_val   = zeros(m, 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return training errors in
    %               error_train and the cross validation errors in error_val.
    %               i.e., error_train(i) and
    %               error_val(i) should give you the errors
    %               obtained after training on i examples.
    %
    
    
     for i = 1:m
         theta = trainLinearReg(X(1:i , :) , y(1:i) , lambda);
         error_train(i) = linearRegCostFunction(X(1:i , :) , y(1:i) , theta , 0);
         error_val(i) = linearRegCostFunction(Xval , yval , theta , 0);
     end
    
    
    
    
    % -------------------------------------------------------------
    
    % =========================================================================
    
    end
    
    

    polyFeatures.m

    function [X_poly] = polyFeatures(X, p)
    %POLYFEATURES Maps X (1D vector) into the p-th power
    %   [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
    %   maps each example into its polynomial features where
    %   X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ...  X(i).^p];
    %
    
    
    % You need to return the following variables correctly.
    X_poly = zeros(numel(X), p);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Given a vector X, return a matrix X_poly where the p-th
    %               column of X contains the values of X to the p-th power.
    %
    %
    m = numel(X);
    
    X1 = X(:);
    
    disp(X1);
    for i = 1:p
      for j = 1:m
    
        X_poly(j,i) = X1(j)^i;
      end
    end
    
    
    
    
    
    % =========================================================================
    
    end
    
    

    validationCurve.m

    function [lambda_vec, error_train, error_val] = ...
        validationCurve(X, y, Xval, yval)
    %VALIDATIONCURVE Generate the train and validation errors needed to
    %plot a validation curve that we can use to select lambda
    %   [lambda_vec, error_train, error_val] = ...
    %       VALIDATIONCURVE(X, y, Xval, yval) returns the train
    %       and validation errors (in error_train, error_val)
    %       for different values of lambda. You are given the training set (X,
    %       y) and validation set (Xval, yval).
    %
    
    % Selected values of lambda (you should not change this)
    lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';
    
    % You need to return these variables correctly.
    error_train = zeros(length(lambda_vec), 1);
    error_val = zeros(length(lambda_vec), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return training errors in
    %               error_train and the validation errors in error_val. The
    %               vector lambda_vec contains the different lambda parameters
    %               to use for each calculation of the errors, i.e,
    %               error_train(i), and error_val(i) should give
    %               you the errors obtained after training with
    %               lambda = lambda_vec(i)
    %
    
    
    
    for i = 1:length(lambda_vec)
        lambda = lambda_vec(i);
        theta = trainLinearReg(X, y, lambda);
        error_train(i) = linearRegCostFunction(X , y , theta , 0);
        error_val(i) = linearRegCostFunction(Xval , yval , theta , 0);
    end
    
    
    
    
    
    
    
    % =========================================================================
    
    end
    
    

    我的个人主页:http://amoyzhp.com/
  • 相关阅读:
    注册接口
    配置node 的路由
    mongoose 与 mylab 的使用 (1)
    PHP中PDO错误/异常(PDOException)处理
    如何使用PDO查询Mysql来避免SQL注入风险?ThinkPHP 3.1中的SQL注入漏洞分析!
    PHP5中PDO的入门教程
    PHP文件夹文件拷贝/复制函数 dir_copy($src = '', $dst = '')
    php将图片以二进制保存到mysql数据库并显示
    php 显示sqlserver二进制图片
    XML文档的PHP程序查询代码
  • 原文地址:https://www.cnblogs.com/amoy-zhp/p/8728293.html
Copyright © 2011-2022 走看看