zoukankan      html  css  js  c++  java
  • Linux驱动之同步、互斥、阻塞的应用

    同步、互斥、阻塞的概念:

    同步:在并发程序设计中,各进程对公共变量的访问必须加以制约,这种制约称为同步。

    互斥机制:访问共享资源的代码区叫做临界区,这里的共享资源可能被多个线程需要,但这些共享资源又不能被同时访问,因此临界区需要以某种互斥机制加以保护,以确保共享资源被互斥访问。

    阻塞与非阻塞:阻塞调用是指调用结果返回之前,当前线程会被挂起,调用线程只有在得到结果之后才会返回。非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程,而是直接返回。

    在按键驱动的例子中,如果有多个应用程序调用按键驱动的设备文件,这时候就要利用同步与互斥的概念对这个种情况进行处理:

    1、利用原子变量标志来判断设备文件是否被打开,原子变量在操作的时候不能被打断,它是利用关闭中断的方式实现的,一旦关闭了中断,内核将不能对进程进行调度,这就保证了原子性。

    直接修改驱动代码,先定义一个原子变量

     static atomic_t open_flag = ATOMIC_INIT(1);     //定义原子变量open_flag 并初始化为1

    接着修改打开文件的函数与关闭文件的函数,初始化时open_flag 为1,一旦打开函数被调用则会减1变为0。关闭函数被调用后会加1又变成1。

    a、在sixth_drv_open 中利用atomic_dec_and_test函数判断是否已经被调用,如果返回值为0,说明已经被调用。调用atomic_inc函数,并且返回。

    b、在sixth_drv_close中第调用atomic_inc。

    static int sixth_drv_open (struct inode * inode, struct file * file)
    {
        int ret;
    
    
        if(atomic_dec_and_test(&open_flag)==0)//自检后是否为0,不为0说明已经被人调用
        {
            atomic_inc(&open_flag);//原子变量+1
            return -EBUSY;
        }
        
        ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);
        if(ret)
        {
            printk("open failed 1
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);
        if(ret)
        {
            printk("open failed 2
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);
        if(ret)
        {
            printk("open failed 3
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);
        if(ret)
        {
            printk("open failed 4
    ");
            return -1;
        }
        
        return 0;
    }
    
    
    static int sixth_drv_close(struct inode * inode, struct file * file)
    {
        atomic_inc(&open_flag);//原子变量+1
        
        free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);
    
         free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);
    
        free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);
    
        free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);
    
        return 0;
    }
    2、利用信号量对打开的文件进行保护:信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。当获取不到信号量时,进程进入休眠等待状态。
     
    直接修改驱动代码,先定义一个互斥锁
    static DECLARE_MUTEX(button_lock);     //定义互斥锁

    接着更改按键驱动中打开文件的函数与关闭文件的函数:

    a、在sixth_drv_open函数中如果文件打开方式非阻塞的,那么调用down_trylock函数获取信号量,此函数如果获取不到信号量,直接返回;如果打开文件的方式是阻塞的,那么调用down函数,如果获取不到信号量,则将进程休眠直到获取信号量为止。

    b、在sixth_drv_close函数利用up函数直接释放掉信号量。

    static int sixth_drv_open (struct inode * inode, struct file * file)
    {
        int ret;
    
        if(file->f_flags & O_NONBLOCK)//非阻塞方式
        {
            if(down_trylock(&button_lock))//获取信号量失败则返回
                return -EBUSY;
        }
        else    
            down(&button_lock);//获得信号量
        
        ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);
        if(ret)
        {
            printk("open failed 1
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);
        if(ret)
        {
            printk("open failed 2
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);
        if(ret)
        {
            printk("open failed 3
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);
        if(ret)
        {
            printk("open failed 4
    ");
            return -1;
        }
        
        return 0;
    }
    
    
    static int sixth_drv_close(struct inode * inode, struct file * file)
    {
        up(&button_lock);//释放信号量
        
        free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);
    
         free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);
    
        free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);
    
        free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);
    
        return 0;
    }

    将完整的按键驱动的源代码贴出

    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/fs.h>
    #include <linux/init.h>
    #include <asm/io.h>        //含有iomap函数iounmap函数
    #include <asm/uaccess.h>//含有copy_from_user函数
    #include <linux/device.h>//含有类相关的处理函数
    #include <asm/arch/regs-gpio.h>//含有S3C2410_GPF0等相关的
    #include <linux/irq.h>    //含有IRQ_HANDLEDIRQ_TYPE_EDGE_RISING
    #include <asm-arm/irq.h>   //含有IRQT_BOTHEDGE触发类型
    #include <linux/interrupt.h> //含有request_irq、free_irq函数
    #include <linux/poll.h>
    #include <asm-generic/errno-base.h>  //含有各种错误返回值
    //#include <asm-armarch-s3c2410irqs.h>
    
    
    
    static struct class *sixth_drv_class;//
    static struct class_device *sixth_drv_class_dev;//类下面的设备
    static int sixthmajor;
    
    static unsigned long *gpfcon = NULL;
    static unsigned long *gpfdat = NULL;
    static unsigned long *gpgcon = NULL;
    static unsigned long *gpgdat = NULL;
    
    struct fasync_struct *sixth_fasync;
        
    static unsigned int key_val;
    
    struct pin_desc 
    {
        unsigned int pin;
        unsigned int key_val;
    };
    
    static struct pin_desc  pins_desc[4] = 
    {
        {S3C2410_GPF0,0x01},
        {S3C2410_GPF2,0x02},
        {S3C2410_GPG3,0x03},
        {S3C2410_GPG11,0x04}
    };
    
    
    static unsigned int ev_press;
    static DECLARE_WAIT_QUEUE_HEAD(button_waitq);//注册一个等待队列button_waitq
    
     static atomic_t open_flag = ATOMIC_INIT(1);     //定义原子变量open_flag 并初始化为1
    
    static DECLARE_MUTEX(button_lock);     //定义互斥锁
    
     
    /*
      *0x01、0x02、0x03、0x04表示按键被按下
      */
      
    /*
      *0x81、0x82、0x83、0x84表示按键被松开
      */
    
    /*
      *利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
      */
    static irqreturn_t buttons_irq(int irq, void *dev_id)
    {
        unsigned int pin_val;
        struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态
        
        pin_val = s3c2410_gpio_getpin(pin_desc->pin);
        
        if(pin_val) //按键松开
            key_val = 0x80 | pin_desc->key_val;
        else
            key_val = pin_desc->key_val;
    
    
        wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程 */
        ev_press = 1;    
        
        kill_fasync(&sixth_fasync, SIGIO, POLL_IN);//发生信号给进程
        
        return IRQ_HANDLED;
    }
    
    
    
    static int sixth_drv_open (struct inode * inode, struct file * file)
    {
        int ret;
    
    
    //    if(atomic_dec_and_test(&open_flag)==0)//自检后是否为0,不为0说明已经被人调用
    //    {
    //        atomic_inc(&open_flag);//原子变量+1
    //        return -EBUSY;
    //    }
        if(file->f_flags & O_NONBLOCK)//非阻塞方式
        {
            if(down_trylock(&button_lock))//获取信号量失败则返回
                return -EBUSY;
        }
        else    
            down(&button_lock);//获得信号量
        
        ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);
        if(ret)
        {
            printk("open failed 1
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);
        if(ret)
        {
            printk("open failed 2
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);
        if(ret)
        {
            printk("open failed 3
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);
        if(ret)
        {
            printk("open failed 4
    ");
            return -1;
        }
        
        return 0;
    }
    
    
    static int sixth_drv_close(struct inode * inode, struct file * file)
    {
    //    atomic_inc(&open_flag);//原子变量+1
        up(&button_lock);//释放信号量
        
        free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);
    
         free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);
    
        free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);
    
        free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);
    
        return 0;
    }
    
    static ssize_t sixth_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
    {
        int ret;
    
        if(count != 1)
        {
            printk("read error
    ");
            return -1;
        }
    
        if(file->f_flags & O_NONBLOCK)//非阻塞方式
        {
            if(!ev_press)//判断是否有按键按下,如果没有直接返回
            {
                    key_val = 0;
                    copy_to_user(userbuf, &key_val, 1);
                    return -EBUSY;
            }
        }
        else//如果没有按键动作,直接进入休眠
            wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中
        
        ret = copy_to_user(userbuf, &key_val, 1);
        ev_press = 0;//按键已经处理可以继续睡眠
        
        if(ret)
        {
            printk("copy error
    ");
            return -1;
        }
        
        return 1;
    }
    
    static unsigned int sixth_drv_poll(struct file *file, poll_table *wait)
    {
        unsigned int ret = 0;
        poll_wait(file, &button_waitq, wait);//将当前进程放到button_waitq列表
    
        if(ev_press)
            ret |=POLLIN;//说明有数据被取到了
    
        return ret;
    }
    
    
    
    static int sixth_drv_fasync(int fd, struct file * file, int on)
    {
        int err;
        printk("fansync_helper
    ");
        err = fasync_helper(fd, file, on, &sixth_fasync);//初始化sixth_fasync
        if (err < 0)
            return err;
        return 0;
    }
    
    
    static struct file_operations sixth_drv_ops = 
    {
        .owner   = THIS_MODULE,
        .open    =  sixth_drv_open,
        .read     = sixth_drv_read,
        .release = sixth_drv_close,
        .poll      =  sixth_drv_poll,
        .fasync   = sixth_drv_fasync,
        
    };
    
    static int sixth_drv_init(void)
    {
        sixthmajor = register_chrdev(0, "buttons", &sixth_drv_ops);//注册驱动程序
    
        if(sixthmajor < 0)
            printk("failes 1 buttons_drv register
    ");
        
        sixth_drv_class = class_create(THIS_MODULE, "buttons");//创建类
        if(sixth_drv_class < 0)
            printk("failes 2 buttons_drv register
    ");
        sixth_drv_class_dev = class_device_create(sixth_drv_class, NULL, MKDEV(sixthmajor,0), NULL,"buttons");//创建设备节点
        if(sixth_drv_class_dev < 0)
            printk("failes 3 buttons_drv register
    ");
    
        
        gpfcon = ioremap(0x56000050, 16);//重映射
        gpfdat = gpfcon + 1;
        gpgcon = ioremap(0x56000060, 16);//重映射
        gpgdat = gpgcon + 1;
    
        printk("register buttons_drv
    ");
        return 0;
    }
    
    static void sixth_drv_exit(void)
    {
        unregister_chrdev(sixthmajor,"buttons");
    
        class_device_unregister(sixth_drv_class_dev);
        class_destroy(sixth_drv_class);
    
        iounmap(gpfcon);
        iounmap(gpgcon);
    
        printk("unregister buttons_drv
    ");
    }
    
    
    module_init(sixth_drv_init);
    module_exit(sixth_drv_exit);
    
    MODULE_LICENSE("GPL");

    接着改写测试程序,测试加入阻塞方式打开文件,在fd = open(filename, O_RDWR|O_NONBLOCK)函数中加入O_NONBLOCK即可以按阻塞方式打开。

    #include <sys/types.h>
    #include <sys/stat.h>
    #include <fcntl.h>
    #include <stdio.h>
    #include <poll.h>
    #include <signal.h>
    
    static int fd;
    
    //static void fifth_testsignal(int signum)
    //{
    //    unsigned char key_val;
    //    
    //    printf("signal = %d
    ",signum);
    
    //    read(fd, &key_val, 1);
    //         printf("signumkey_val: 0x%x
    
    ",key_val);
    //}
    
    /*
      *usage ./buttonstest
      */
    int main(int argc, char **argv)
    {
        char* filename="dev/buttons";
       int oflags,ret;
       unsigned char key_val;
        
        fd = open(filename, O_RDWR|O_NONBLOCK);//打开dev/firstdrv设备文件,非阻塞方式打开
        if (fd < 0)//小于0说明没有成功
        {
            printf("error, can't open %s
    ", filename);
            return 0;
        }
        
        if(argc !=1)
        {
            printf("Usage : %s ",argv[0]);
         return 0;
        }
    //    signal(SIGIO, fifth_testsignal);//注册一个信号,函数为fifth_testsignal
    //    
    //    fcntl(fd, F_SETOWN, getpid());  // 告诉内核,发给谁
    //    
    //    oflags = fcntl(fd, F_GETFL); //取得当前的状态
    //    
    //    fcntl(fd, F_SETFL, oflags | FASYNC);  // 改变fasync标记,最终会调用到驱动的faync > fasync_helper:初始化/释放fasync_struct
        
      while(1)
      {
           ret = read(fd, &key_val, 1);
             printf("ret = %d,key_val: 0x%x
    ",ret,key_val);
        sleep(5);
      }
        
       return 0;
    }
    将驱动程序与测试程序编译后运行。发现以阻塞方式运行的测试程序如果再次运行会处于睡眠状态;如果以非阻塞方式再次运行程序,会导致第二个程序退出。
     
    以上只是记录了怎么调用内核函数来实现互斥、阻塞机制,具体原理还未分析,后面再分析。
     
     
  • 相关阅读:
    Angular 11 中 Schematics 的代码优化
    GoEasy使用阿里云OSS出现的问题
    易班模拟登录-Day1笔记
    类型别名与接口
    TypeScript中的数据类型
    Javascript类型系统
    手写Promise3
    手写Promise2
    手写Promise1
    Promise基础用法2
  • 原文地址:https://www.cnblogs.com/andyfly/p/9482077.html
Copyright © 2011-2022 走看看