zoukankan      html  css  js  c++  java
  • ACM学习历程—HDU1695 GCD(容斥原理 || 莫比乌斯)

    Description

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs. 
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same. 

    Yoiu can assume that a = c = 1 in all test cases.

     

    Input

    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. 
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above. 

     

    Output

    For each test case, print the number of choices. Use the format in the example. 

     

    Sample Input

    2

    1 3 1 5 1

    1 11014 1 14409 9

     

    Sample Output

    Case 1: 9

    Case 2: 736427

    Hint

    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

    题目大意就是求x在[a, b],y在[c, d]区间内的满足gcd(x, y) == k的(x, y)对有多少,而且(3, 4) == (4, 3)这种。

    可以使用容斥原理来做。

    也可以使用莫比乌斯反演。

    设F(d)表示满足区间的(x, y),且d | gcd(x, y)的个数。

    f(d)表示满足区间的(x, y), 且d == gcd(x, y)的个数。

    那么F(d) = sum(f(n)) (d|n)

    然后根据莫比乌斯反演:

    F(d) = sum(f(n)) (d|n) => f(d) = sum(u(n/d)*F(n)) (d|n)

    然后目标就是求F(n)了。

    首先不计重复对的话,总共有(b/n)*(d/n)对。

    然后需要排除重复的,重复的不外乎是(a, b) == (b, a)这种情况。而且这种情况都且出现两次。

    而且需要减掉(a, a)的情况(强行让b <= d),于是就是:(b/n)*(b/n) – (b/n)

    然后除二就是多加的,于是:

    F(n) = (b/n)*(d/n)-((b/n)*(b/n)-(b/n))/2

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #define LL long long
    
    using namespace std;
    
    const int maxN = 100010;
    int u[maxN], prime[maxN];
    bool vis[maxN];
    int a, b, c, d, k;
    
    //莫比乌斯反演
    //F(n)和f(n)是定义在非负整数集合上的两个函数
    //并且满足条件F(n) = sum(f(d)) (d|n)
    //那么f(n) = sum(u(d)*F(n/d)) (d|n)
    //case 1: if d = 1, u(d) = 1
    //case 2: if d = p1*p2...pk, (pi均为互异素数), u(d) = (-1)^k
    //case 3: else, u(d) = 0;
    //性质1: sum(u(d)) (d|n) = 1 (n == 1) or 0 (n > 1)
    //性质2: sum(u(d)/d) (d|n) = phi(n)/n
    //另一种形式:F(d) = sum(f(n)) (d|n) => f(d) = sum(u(n/d)*F(n)) (d|n)
    //线性筛选求莫比乌斯反演函数代码
    void mobius()
    {
        memset(vis, false,sizeof(vis));
        u[1] = 1;
        int cnt = 0;
        for(int i = 2; i < maxN; i++)
        {
            if(!vis[i])
            {
                prime[cnt++] = i;
                u[i] = -1;
            }
            for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
            {
                vis[i*prime[j]] = true;
                if(i%prime[j])
                    u[i*prime[j]] = -u[i];
                else
                {
                    u[i*prime[j]] = 0;
                    break;
                }
            }
        }
    }
    
    void work()
    {
        if (k == 0)
        {
            printf("0
    ");
            return;
        }
        LL ans = 0;
        if (b > d)
            swap(b, d);
        for (LL i = k; i <= b; i += k)
            ans += ((b/i)*(d/i)-((b/i)*(b/i)-(b/i))/2)*u[i/k];
        printf("%I64d
    ", ans);
    }
    
    int main()
    {
        //freopen("test.in", "r", stdin);
        mobius();
        int T;
        scanf("%d", &T);
        for (int times = 1; times <= T; ++times)
        {
            printf("Case %d: ", times);
            scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
            work();
        }
        return 0;
    }
  • 相关阅读:
    svn导出文件夹到另外目录export
    关键词提取自动摘要相关开源项目,自动化seo
    高级前端面试题,部分答案待补充
    三句话感受一本书,让脑子变聪明的7本书,每本只需理解3句话!
    关于系统设置分辨率比例影响到网页宽度大小的问题
    QQ在线客服,默认到要加好友,授权也不起作用需要先开通QQ营销服务
    网络营销相关缩写名称CPM CPT CPC CPA CPS SEM SEO解析
    让nodepad++编辑时链接能双击打开
    工作是一种修行,工作本身,就是一种修行(深度好文)
    foxmail收取163企业邮箱设置,不能直接用foxmail默认的配置,否则一直提示帐号密码错误
  • 原文地址:https://www.cnblogs.com/andyqsmart/p/4862612.html
Copyright © 2011-2022 走看看