zoukankan      html  css  js  c++  java
  • [Luogu] P4211 [LNOI2014]LCA

    (Link)

    Description

    给出一个(n)个节点的有根树(编号为(0)(n−1),根节点为(0))。

    一个点的深度定义为这个节点到根的距离 (+1)

    (dep[i])表示点(i)的深度,(LCA(i,j))表示(i)(j)的最近公共祖先。

    (q)次询问,每次询问给出(l r z),求(sum_{i=l}^r dep[LCA(i,z)])

    Solution

    注意到(dep[LCA(x, y)])就是先把(x)到根路径上的点全部加一,再查询(y)到根路径上的点权之和。(因为(LCA(x,y))到根走过的点,就是(x)到根的和(y)到根的路径的重复部分。)

    而显然(sum_{i=l}^r dep[LCA(i,z)]=sum_{i=1}^r dep[LCA(i,z)]-sum_{i=1}^{l-1} dep[LCA(i,z)])。所以我们现在要解决如何快速求(sum_{i=1}^x dep[LCA(i,y)])

    根据之前的结论,这其实就是把从(1)(x)的所有点到根路径上的点全部加一,再查询(y)到根路径上的点权之和。我们很容易会想到树链剖分。

    但对每一个(y)都做一遍类似的操作显然不现实。注意到(sum_{i=1}^x)之间是有很多重复的。于是我们可以把每个询问拆成((l-1,-1))((r,1)),然后把(pos)从小到大排序。维护一个(now)指针,在把(now)从小到大指向当前询问(pos)的同时(add(1, now)),即把(now)到根路径上的点全部加一。(now)指向(pos)之后,设(z)是当前询问的(z)(calc(1,pos))算出当前(pos)到根路径上的点权之和,就是(sum_{i=1}^{pos} dep[LCA(i,z)]),贡献对应的加在或减在(res[id[pos]])上。

    路径加和求和都是树剖基本操作了。

    Code

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define ls(x) (x << 1)
    #define rs(x) (x << 1 | 1)
    
    const int mod = 201314;
    
    int n, q, tot, cnt, tt, res[50005], id[50005], top[50005], f[50005], dep[50005], sz[50005], mson[50005], hd[50005], to[100005], nxt[100005];
    
    struct node
    {
    	int l, r, sum, add;
    }t[200005];
    
    struct rd
    {
    	int pos, id, z, fl;
    }ask[100005];
    
    int read()
    {
    	int x = 0, fl = 1; char ch = getchar();
    	while (ch < '0' || ch > '9') { if (ch == '-') fl = -1; ch = getchar();}
    	while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0'; ch = getchar();}
    	return x * fl;
    }
    
    int cmp(rd p, rd q)
    {
    	return p.pos < q.pos;
    }
    
    void add(int x, int y)
    {
    	tot ++ ;
    	to[tot] = y;
    	nxt[tot] = hd[x];
    	hd[x] = tot;
    	return;
    }
    
    void push_up(int p)
    {
    	t[p].sum = (t[ls(p)].sum + t[rs(p)].sum) % mod;
    	return;
    }
    
    void push_down(int p)
    {
    	if (!t[p].add) return;
    	t[ls(p)].add = (t[ls(p)].add + t[p].add) % mod;
    	t[rs(p)].add = (t[rs(p)].add + t[p].add) % mod;
    	t[ls(p)].sum = (t[ls(p)].sum + t[p].add * (t[ls(p)].r - t[ls(p)].l + 1) % mod) % mod;
    	t[rs(p)].sum = (t[rs(p)].sum + t[p].add * (t[rs(p)].r - t[rs(p)].l + 1) % mod) % mod;
    	t[p].add = 0;
    	return;
    }
    
    void update(int p, int l0, int r0, int d)
    {
    	if (l0 <= t[p].l && t[p].r <= r0)
    	{
    		t[p].add = (t[p].add + d) % mod;
    		t[p].sum = (t[p].sum + (t[p].r - t[p].l + 1) * d % mod) % mod;
    		return;
    	}
    	push_down(p);
    	int mid = (t[p].l + t[p].r) >> 1;
    	if (l0 <= mid) update(ls(p), l0, r0, d);
    	if (r0 > mid) update(rs(p), l0, r0, d);
    	push_up(p);
    	return;
    }
    
    
    int query(int p, int l0, int r0)
    {
    	if (l0 <= t[p].l && t[p].r <= r0) return t[p].sum % mod;
    	push_down(p);
    	int mid = (t[p].l + t[p].r) >> 1, cnt = 0;
    	if (l0 <= mid) cnt = cnt + query(ls(p), l0, r0);
    	if (r0 > mid) cnt = cnt + query(rs(p), l0, r0);
    	return cnt;
    }
    
    void build(int p, int l0, int r0)
    {
    	t[p].l = l0; t[p].r = r0;
    	if (l0 == r0) return;
    	int mid = (l0 + r0) >> 1;
    	build(ls(p), l0, mid);
    	build(rs(p), mid + 1, r0);
    	push_up(p);
    	return;
    }
    
    void dfs1(int x, int fa)
    {
    	sz[x] = 1;
    	int mx = -1;
    	for (int i = hd[x]; i; i = nxt[i])
    	{
    		int y = to[i];
    		if (y == fa) continue;
    		dep[y] = dep[x] + 1;
    		f[y] = x;
    		dfs1(y, x);
    		sz[x] += sz[y];
    		if (sz[y] > mx)
    		{
    			mx = sz[y];
    			mson[x] = y;
    		}
    	}
    	return;
    }
    
    void dfs2(int x, int tp)
    {
    	id[x] = ++ cnt;
    	top[x] = tp;
    	if (!mson[x]) return;
    	dfs2(mson[x], tp);
    	for (int i = hd[x]; i; i = nxt[i])
    	{
    		int y = to[i];
    		if (y == f[x] || y == mson[x]) continue;
    		dfs2(y, y);
    	}
    	return;
    }
    
    void q1(int x, int y)
    {
    	while (top[x] != top[y])
    	{
    		if (dep[top[x]] < dep[top[y]]) swap(x, y);
    		update(1, id[top[x]], id[x], 1);
    		x = f[top[x]];
    	}
    	if (dep[x] > dep[y]) swap(x, y);
    	update(1, id[x], id[y], 1);
    	return;
    }
    
    int q2(int x, int y)
    {
    	int sum = 0;
    	while (top[x] != top[y])
    	{
    		if (dep[top[x]] < dep[top[y]]) swap(x, y);
    		sum = (sum + query(1, id[top[x]], id[x])) % mod;
    		x = f[top[x]];
    	}
    	if (dep[x] > dep[y]) swap(x, y);
    	sum = (sum + query(1, id[x], id[y])) % mod;
    	return sum;
    }
    
    int main()
    {
    	n = read(); q = read();
    	for (int i = 1; i <= n - 1; i ++ )
    	{
    		int x = read(); x ++ ;
    		add(x, i + 1); add(i + 1, x);
    	}
    	dfs1(1, 0); dfs2(1, 1);
    	build(1, 1, n);
    	for (int i = 1; i <= q; i ++ )
    	{
    		int l = read(), r = read(), z = read();
    		l ++ ; r ++ ; z ++ ;
    		tt ++ ; ask[tt].pos = l - 1; ask[tt].id = i; ask[tt].z = z; ask[tt].fl = -1;
    		tt ++ ; ask[tt].pos = r; ask[tt].id = i; ask[tt].z = z; ask[tt].fl = 1;
    	}
    	sort(ask + 1, ask + tt + 1, cmp);
    	int now = 0;
    	for (int i = 1; i <= tt; i ++ )
    	{
    		while (now < ask[i].pos) now ++ , q1(1, now);
    		res[ask[i].id] = (res[ask[i].id] + q2(1, ask[i].z) * ask[i].fl + mod) % mod;
    	}
    	for (int i = 1; i <= q; i ++ )
    		printf("%d
    ", res[i]);
    	return 0;
    }
    
  • 相关阅读:
    JSON
    ASP.NET 应用程序与页面生命周期
    authentication vs authorization
    令人郁闷的estimate功能
    Histograms: An Overview
    intro TwoPhase Commit(2PC)
    About transaction lock and V$lock view
    Zenoss Announces Monitoring for VMWare's Cloud Director
    Script to show Active Distributed Transactions
    How to trigger ORA00600,ORA7445 by manual
  • 原文地址:https://www.cnblogs.com/andysj/p/13953991.html
Copyright © 2011-2022 走看看